
Beijing • Cambridge • Farnham • K�ln • Sebastopol • Taipei • Tokyo

Head First C

Wouldn‛t it be dreamy if there
were a book on C that was better

than having a root canal at the
dentists? I guess it’s just a fantasy...

David Griffiths
Dawn Griffiths

Head First C
by David Griffiths and Dawn Griffiths

Copyright © 2011 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:		 Kathy Sierra, Bert Bates

Editor:			 Brian Sawyer

Cover Designers:		

Production Editor:		

Proofreader:			

Indexer:			
Page Viewers:	 	 Mum and Dad, Carl

Printing History:
December 2011: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Head First series designations,
Head First C, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No kittens were harmed in the making of this book. Really.

ISBN: 978-1-449-39991-7

[C]										

This book uses RepKover™,  a durable and flexible lay-flat binding.
TM

Mum and Dad Carl

To Brian Kernighan and Dennis Ritchie for inventing C.

iv

the authors

Authors of Head First C

David Griffiths

David Griffiths began programming at age 12,
when he saw a documentary on the work of Seymour
Papert. At age 15, he wrote an implementation of
Papert’s computer language LOGO. After studying
Pure Mathematics at University, he began writing code
for computers and magazine articles for humans. He’s
worked as an agile coach, a developer, and a garage
attendant, but not in that order. He can write code in
over 10 languages and prose in just one, and when not
writing, coding, or coaching, he spends much of his
spare time travelling with his lovely wife—and co-
author—Dawn.

Before writing Head First C, David wrote two other Head
First books: Head First Rails and Head First Programming.

You can follow him on Twitter at:

 http://twitter.com/dogriffiths

Dawn Griffiths

Dawn Griffiths started life as a mathematician at
a top UK university where she was awarded a first-class
honours degree in mathematics. She went on to pursue
a career in software development, and has over 15 yesrs
experience working in the IT industry.

Before joining forces with David on Head First C, Dawn
wrote two other Head First books (Head First Statistics
and Head First 2D Geometry) and has also worked on a
host of other books in the series.

When Dawn’s not working on Head First books, you’ll
find her honing her Tai Chi skills, running, making
bobbin lace or cooking. She also enjoys traveling and
spending time with her husband, David.

table of contents

v

Table of Contents (Summary)

Table of Contents (the real thing)

Your brain on C. � Here you are trying to learn something, while here your

brain is doing you a favor by making sure the learning doesn’t stick. Your brain’s

thinking, “Better leave room for more important things, like which wild animals to

avoid and whether naked snowboarding is a bad idea.” So how do you trick your

brain into thinking that your life depends on knowing C?

Intro

Who is this book for?	 xxiv

We know what you’re thinking	 xxv

Metacognition	 xxvii

Bend your brain into submission	 xxix

Read me	 xxx

The technical review team	 xxxii

Acknowledgments	 xxxiii

 	 Intro	 xxiii

1	 Diving in: Getting started with C	 1

2	 Memory and pointers: What are you pointing at?	 37

3	 Do one thing and do it well: Creating small tools	 95

4	 Break it down, build it up: Using multiple source files	 149

5	 Structs, unions, and bitfields: Rolling your own structures	

6	 Data structures and dynamic memory: Connecting your custom data types	

7	 Reuseable utilities: Turning your functions up to 11	

8	 Dynamic libraries: Hot, sweappable code	

9	 Creating new processes: Process mojo	

10	 Using multiple source files: Doing more than one thing at once	

11	 Sockets and asynchronous I/O: Talking to the network	

12	 Inter-process communication: Living in a community	

table of contents

Diving in1
getting started with C

Want to get inside the computers head? �
Need to write high-performance code for a new game? Program an Arduino? Or

use that advanced third-party library in your iPhone app? If so, then C’s there to

help. C works at a much lower level that most other languages, so understanding C

gives you a much better idea of what’s really going on. C can even help you better

understand other languages as well. So dive in, grab your compiler, and get started in

no time.

table of contents

vii

What are you pointing at?
If want to kick butt with C, you need to understand how C
handles memory.�
The C language gives you a lot more control over how your program uses the

computer’s memory. In this chapter, you’ll strip back the covers and see exactly what

happens when you read and write variables. You’ll learn how arrays work, how

to avoid some nasty memory SNAFUs, and most of all, you’ll see how mastering

pointers and memory addressing is key to becoming a kick-ass C programmer.

memory and pointers

2

table of contents

Do one thing and do it well3
creating small tools

Every operating system includes small tools.�
Small tools perform specialized small tasks, such as reading and writing

files, or filtering data. If you want to perform more complex tasks, you can even

link several tools together. But how are these small tools built? In this chapter,

you’ll look at the building blocks of creating small tools. You’ll learn how to

control command-line options, how to manage streams of information, and

redirection, getting tooled up in no time.

table of contents

ix

Break it down, build it up
If you create a big program, you don’t want a big source file.�
Can you imagine how difficult and time-consuming a single source file for an enterprise

level program would be to maintain? In this chapter, you’ll learn how C allows you to

break your source code into small manageable chunks and then rebuild them into

one huge program. Along the way, you’ll learn a bit more about data-type subtleties,

and get to meet your new best friend: make.

using multiple source files

4

gcc -o

gcc -c

table of contents

Rolling your own structures5
struts, unions, and bitfields

Most things in life are more complex than a simple number.�
So far we’ve looked at the basic data-types of the C language, but what if you want

to go beyond numbers and pieces of text, and model things in the real world?

Structs allow you to model real-world complexities by writing your own structures.

We’ll show you how to combine the basic data-types into structs, and even handle

life’s uncertainties with unions. And if you’re after a simple yes or no, bitfields may

be just what you need.

This is Myrtle... ...but her clone is sent to the function.

Turtle "t".

table of contents

xi

Connecting your custom data types
Once you’ve created custom data types, the next thing to do
is connect them together.�
This chapter begins by looking in more detail at why most coders pass struct pointrs

rather than structs themselves. Then, you’ll use struct pointers to connect custom data

types into large, complex data structures to model real world data. To make the data

structures cope with flexible amounts of data, you’ll finally look at how to dynamically

allocate memory on the heap and ways of tidying away memory when we’re done with

it.

data structures and dynamic memory

6

table of contents

Turn your functions up to 117
reuseable utilities

Basic functions are great, but sometimes you need more.�
Earlier chapters have looked at basic functions, but what if you need even more

power and flexibility to achieve what you want? Topics in the chapter include:

rubber functions, or how to have a flexible number of arguments, and how passing

functions as parameters can multiply your code’s IQ. By the end of this chapter,

you will be able to write more flexible, reusable, and powerful utilities.

table of contents

xiii

Hot, swappable code
You don’t always need to use everything.�
You don’t pack your swimsuit if you’re going to Alaska. And you don’t write programs

that load code unless they need it. This chapter will show you how to split your problem

into dynamically loaded libraries. By the end of the chapter, you will be able to create

dynamic libraries that can switch at runtime, making their applications more dynamic

and configurable.

dynamic libraries

8

table of contents

Process mojo9
creating new processes

Every operating system includes small tools.�
Programs often need to create and manage other processes. This chapter will

teach you how to spawn new processes and how to communicate with them

once they’re running. By the end of this chapter, you will understand how to use

fork() and exec() calls to spawn/replace processes and how to use signals to

communicate with other processes.

table of contents

xv

Doing more than one thing at once
Programs often need to several things at the same time.�
POSIX threads can boost the performance of your code by spinning off several pieces

of code to run in parallel. But... be careful! Threads are powerful tools, but you don’t

want them crashing them into each other. In this chapter, you’ll learn how to put up

traffic signs and lane markers that will prevent a code pile-up. By the end, you will know

how to create POSIX threads and how to use synchronization mechanisms to protect

the integrity of sensitive data.

using multiple source files

10

table of contents

Talking to the network11
sockets and asynchronous i/o

Many programs need to talk to programs on a different
machine.�
You’ve learned how to use I/O to communicate with files and how processes on

the same machine can communicate with each other. Now you’re going to reach

to the rest of the world and see how we can write C programs that can talk to other

programs across the network and across the world. By the end of this chapter, you

will be able to create programs that behave as servers and programs that behave

as clients.

table of contents

xvii

Living in the community
Programs need to work together.�
Thankfully, the C language provides a set of tools that makes this possible. Two

programs need to share live data? Well, they can share memory. Two programs need to

talk to each other? Try connecting them with a pair of pipes. These tools allow programs

to communicate and cooperate. But like any civilized conversation, rules need to be

observed. In this chapter, you’ll learn how locking mechanisms like semaphores can

prevent dog fights and keep your computer a civilized, well-ordered, and stable place to

be.

inter-process communication

12

xix

how to use this book

Intro

In this section we answer the burning question:
“So why DID they put that in a C book?”

I can’t believe
they put that in a

C book.

   intro

how to use this book

Who is this book for?

Who should probably back away from this book?

If you can answer “yes” to all of these:

If you can answer “yes” to any of these:

this book is for you.

this book is not for you.

[Note from marketing: this book is for anyone with a credit card... we’ll accept a check, too.]

Do you prefer actually doing things and applying the stuff
you learn over listening to someone in a lecture rattle on
for hours on end?

Do you want to master C, create the next big thing in
software, make a small fortune, and retire to your own
private island?

2

Are you looking for a quick introduction or reference book
to C?

1

Do you already know how to program in another
programming language?

1

Would you rather have your toenails pulled out by 15
screaming monkeys than learn something new? Do you
believe a C book should cover everything and if it bores
the reader to tears in the process then so much the
better?

2

OK, maybe that one’s a little
far-fetched. But, you gotta
start somewhere, right?

3

you are here 4   xxi

“How can this be a serious C book?”

“What’s with all the graphics?”

“Can I actually learn it this way?”

Your brain craves novelty. It’s always searching, scanning, waiting for something
unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things
you encounter? Everything it can to stop them from interfering with the
brain’s real job—recording things that matter. It doesn’t bother saving the
boring things; they never make it past the “this is obviously not important”
filter.

How does your brain know what’s important? Suppose you’re out for a day
hike and a tiger jumps in front of you, what happens inside your head and
body?

Neurons fire. Emotions crank up. Chemicals surge.

And that’s how your brain knows...

This must be important! Don’t forget it!
But imagine you’re at home, or in a library. It’s a safe, warm, tiger‑free zone.
You’re studying. Getting ready for an exam. Or trying to learn some tough
technical topic your boss thinks will take a week, ten days at the most.

Just one problem. Your brain’s trying to do you a big favor. It’s trying to
make sure that this obviously non-important content doesn’t clutter up scarce
resources. Resources that are better spent storing the really big things.
Like tigers. Like the danger of fire. Like how you should never have
posted those “party” photos on your Facebook page. And there’s no
simple way to tell your brain, “Hey brain, thank you very much, but
no matter how dull this book is, and how little I’m registering on the
emotional Richter scale right now, I really do want you to keep this
stuff around.”

We know what you’re thinking

We know what your brain is thinking

Your brain thinks THIS is important.

Your brain t
hinks

THIS isn’t worth

saving.

Great. Only 464
more dull, dry,
boring pages.

33

   intro

how to use this book

We think of a “Head First” reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure

you don’t forget it. It’s not about pushing facts into your head. Based on the latest

research in cognitive science, neurobiology, and educational psychology, learning

takes a lot more than text on a page. We know what turns your brain on.

Some of the Head First learning principles:

Make it visual. Images are far more memorable than words alone, and make learning much

more effective (up to 89% improvement in recall and transfer studies). It also makes things more

understandable. Put the words within or near the graphics they relate to, rather than on

the bottom or on another page, and learners will be up to twice as likely to solve problems related to the

content.

Use a conversational and personalized style. In recent studies, students performed up

to 40% better on post-learning tests if the content spoke directly to the reader, using a first-person,

conversational style rather than taking a formal tone. Tell stories instead of lecturing. Use casual language.

Don’t take yourself too seriously. Which would you pay more attention to: a stimulating dinner party

companion, or a lecture?

Get the learner to think more deeply. In other words, unless you actively flex your neurons,

nothing much happens in your head. A reader has to be motivated, engaged, curious, and inspired to

solve problems, draw conclusions, and generate new knowledge. And for that, you need challenges,

exercises, and thought-provoking questions, and activities that involve both sides of the brain and

multiple senses.

Get—and keep—the reader’s attention. We’ve all had the “I really want to learn this but I can’t

stay awake past page one” experience. Your brain pays attention to things that are out of the ordinary,

interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn’t have to be

boring. Your brain will learn much more quickly if it’s not.

Touch their emotions. We now know that your ability to remember something is largely dependent

on its emotional content. You remember what you care about. You remember when you feel something.

No, we’re not talking heart‑wrenching stories about a boy and his dog. We’re talking emotions like

surprise, curiosity, fun, “what the...?” , and the feeling of “I Rule!” that comes when you solve a puzzle, learn

something everybody else thinks is hard, or realize you know something that “I’m more technical than

thou” Bob from engineering doesn’t.

you are here 4   xxiii

Metacognition: thinking about thinking
I wonder how

I can trick my brain
into remembering
this stuff...

If you really want to learn, and you want to learn more quickly and more
deeply, pay attention to how you pay attention. Think about how you think.
Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we
were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you’re holding this book, you really want to learn how
to program And you probably don’t want to spend a lot of time. If you want
to use what you read in this book, you need to remember what you read. And
for that, you’ve got to understand it. To get the most from this book, or any book
or learning experience, take responsibility for your brain. Your brain on this
content.

The trick is to get your brain to see the new material you’re learning as
Really Important. Crucial to your well‑being. As important as a tiger.
Otherwise, you’re in for a constant battle, with your brain doing its best to
keep the new content from sticking.

So just how DO you get your brain to treat
programming like it was a hungry tiger?
There’s the slow, tedious way, or the faster, more effective way. The
slow way is about sheer repetition. You obviously know that you are able to learn
and remember even the dullest of topics if you keep pounding the same thing into your
brain. With enough repetition, your brain says, “This doesn’t feel important to him, but he
keeps looking at the same thing over and over and over, so I suppose it must be.”

The faster way is to do anything that increases brain activity, especially different
types of brain activity. The things on the previous page are a big part of the solution,
and they’re all things that have been proven to help your brain work in your favor. For
example, studies show that putting words within the pictures they describe (as opposed to
somewhere else in the page, like a caption or in the body text) causes your brain to try to
makes sense of how the words and picture relate, and this causes more neurons to fire.
More neurons firing = more chances for your brain to get that this is something worth
paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they
perceive that they’re in a conversation, since they’re expected to follow along and hold up
their end. The amazing thing is, your brain doesn’t necessarily care that the “conversation”
is between you and a book! On the other hand, if the writing style is formal and dry, your
brain perceives it the same way you experience being lectured to while sitting in a roomful
of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning…

   intro

how to use this book

Here’s what WE did:
We used pictures, because your brain is tuned for visuals, not text. As far as your brain’s
concerned, a picture really is worth a thousand words. And when text and pictures work
together, we embedded the text in the pictures because your brain works more effectively
when the text is within the thing the text refers to, as opposed to in a caption or buried in the
text somewhere.

We used redundancy, saying the same thing in different ways and with different media types,
and multiple senses, to increase the chance that the content gets coded into more than one area
of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty,
and we used pictures and ideas with at least some emotional content, because your brain
is tuned to pay attention to the biochemistry of emotions. That which causes you to feel
something is more likely to be remembered, even if that feeling is nothing more than a little
humor, surprise, or interest.

We used a personalized, conversational style, because your brain is tuned to pay more
attention when it believes you’re in a conversation than if it thinks you’re passively listening
to a presentation. Your brain does this even when you’re reading.

We included more than 80 activities, because your brain is tuned to learn and remember
more when you do things than when you read about things. And we made the exercises
challenging-yet-do-able, because that’s what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while
someone else wants to understand the big picture first, and someone else just wants to see
an example. But regardless of your own learning preference, everyone benefits from seeing the
same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you
engage, the more likely you are to learn and remember, and the longer you can stay focused.
Since working one side of the brain often means giving the other side a chance to rest, you
can be more productive at learning for a longer period of time.

And we included stories and exercises that present more than one point of view,
because your brain is tuned to learn more deeply when it’s forced to make evaluations and
judgments.

We included challenges, with exercises, and by asking questions that don’t always have
a straight answer, because your brain is tuned to learn and remember when it has to work at
something. Think about it—you can’t get your body in shape just by watching people at the
gym. But we did our best to make sure that when you’re working hard, it’s on the right things.
That you’re not spending one extra dendrite processing a hard-to-understand example,
or parsing difficult, jargon-laden, or overly terse text.

We used people. In stories, examples, pictures, etc., because, well, because you’re a person.
And your brain pays more attention to people than it does to things.

you are here 4   xxv

So, we did our part. The rest is up to you. These tips are a
starting point; listen to your brain and figure out what works
for you and what doesn’t. Try new things.

6 Drink water. Lots of it.
Your brain works best in a nice bath of fluid.
Dehydration (which can happen before you ever
feel thirsty) decreases cognitive function.

9 Write a lot of code!
There’s only one way to learn to program in C:
write a lot of code. And that’s what you’re going
to do throughout this book. Coding is a skill, and
the only way to get good at it is to practice. We’re
going to give you a lot of practice: every chapter has
exercises that pose a problem for you to solve. Don’t
just skip over them—a lot of the learning happens
when you solve the exercises. We included a solution
to each exercise—don’t be afraid to peek at the
solution if you get stuck! (It’s easy to get snagged
on something small.) But try to solve the problem
before you look at the solution. And definitely get it
working before you move on to the next part of the
book.

8 Feel something.
Your brain needs to know that this matters. Get
involved with the stories. Make up your own
captions for the photos. Groaning over a bad joke
is still better than feeling nothing at all.

7 Listen to your brain.
Pay attention to whether your brain is getting
overloaded. If you find yourself starting to skim
the surface or forget what you just read, it’s time
for a break. Once you go past a certain point, you
won’t learn faster by trying to shove more in, and
you might even hurt the process.

5 Talk about it. Out loud.
Speaking activates a different part of the brain. If
you’re trying to understand something, or increase
your chance of remembering it later, say it out loud.
Better still, try to explain it out loud to someone else.
You’ll learn more quickly, and you might uncover
ideas you hadn’t known were there when you were
reading about it.

4 Make this the last thing you read before bed.
Or at least the last challenging thing.
Part of the learning (especially the transfer to
long-term memory) happens after you put the book
down. Your brain needs time on its own, to do more
processing. If you put in something new during that
processing time, some of what you just learned will
be lost.

3 Read the “There are No Dumb Questions”
That means all of them. They’re not optional
sidebars, they’re part of the core content!
Don’t skip them.

Cut this out and stick it on your refrigerator.

Here’s what YOU can do to bend
your brain into submission

2 Do the exercises. Write your own notes.
We put them in, but if we did them for you, that
would be like having someone else do your workouts
for you. And don’t just look at the exercises. Use a
pencil. There’s plenty of evidence that physical
activity while learning can increase the learning.

Don’t just read. Stop and think. When the book asks
you a question, don’t just skip to the answer. Imagine
that someone really is asking the question. The
more deeply you force your brain to think, the better
chance you have of learning and remembering.

Slow down. The more you understand, the
less you have to memorize.

1

   intro

how to use this book

Read Me

This is a learning experience, not a reference book. We deliberately stripped out everything
that might get in the way of learning whatever it is we’re working on at that point in the
book. And the first time through, you need to begin at the beginning, because the book
makes assumptions about what you’ve already seen and learned.

We assume you’re new to C, but not to programming.

We assume that you’ve already done some programming. Not a lot, but we’ll assume you’ve
already seen things like loops and variables in some other language, like JavaScript. C is
actually a pretty advanced language, so if you’ve never done any programming at all, then
you might want to read some other book before you start on this one. We’d suggest starting
with Head First Programming.

You need to install a C compiler on your computer.

Throughout the book we’ll be using the Gnu Compiler Collection (gcc) because it’s free
and, well, we think it’s just a pretty darned good compiler. You’ll need to make sure
have gcc installed on your machine. The good news is, if you have a Linux computer,
then you should already have gcc. If you’re using a Mac, you’ll need to install the
Xcode/Developer tools. You can either download these from the Apple App Store or by
downloading them from Apple. If you’re on a Windows machine you have a couple
options. Cygwin (http://www.cygwin.com) gives you a complete simulation of a UNIX
environment, including gcc. But if you want to create programs that will work on
Windows plain-and-simple, then you might want to install the Minimalist GNU for Windows
(MingW) from http://www.mingw.org.

All the code in this book is intended to run across all these operating systems and we’ve
tried hard not to write anything that will only work on one type of computer. Occasionally
there will be some differences, but we’ll make sure to point those out to you. .

We begin by teaching some basic C concepts, then we start
putting C to work for you right away.
We cover the fundamentals of C in Chapter 1. That way, by the time you make it all the
way to Chapter 2, you are creating programs that actually do something real, useful, and—
gulp!—fun. The rest of the book then builds on your C skills turning you from C newbie to
coding ninja master in no time.

you are here 4   xxvii

The activities are NOT optional.

The exercises and activities are not add-ons; they’re part of the core content of the book.
Some of them are to help with memory, some are for understanding, and some will help
you apply what you’ve learned. Don’t skip the exercises.

The redundancy is intentional and important.
One distinct difference in a Head First book is that we want you to really get it. And we
want you to finish the book remembering what you’ve learned. Most reference books
don’t have retention and recall as a goal, but this book is about learning, so you’ll see some
of the same concepts come up more than once.

The examples are as lean as possible.
Our readers tell us that it’s frustrating to wade through 200 lines of an example looking
for the two lines they need to understand. Most examples in this book are shown within
the smallest possible context, so that the part you’re trying to learn is clear and simple.
Don’t expect all of the examples to be robust, or even complete—they are written
specifically for learning, and aren’t always fully-functional.

The Brain Power exercises don’t have answers.
For some of them, there is no right answer, and for others, part of the learning
experience of the Brain Power activities is for you to decide if and when your answers
are right. In some of the Brain Power exercises, you will find hints to point you in the
right direction.

   intro

the review teamthe review team

The technical review team

you are here 4   xxix

Our editor:

Many thanks to Brian Sawyer for asking us to write this book
in the first place. Brian believed in us every step of the way, gave
us the freedom to try out new ideas, and didn’t panic too much
when deadlines loomed.

The O’Reilly team:

Acknowledgments

Brian Sawyer

A big thank you goes to the lovely Karen Shaner made us feel at home in Boston, and
was always there to help us track down elusive images. Thanks also to Laurie Petrycki
for keeping us well-fed and well-motivated.

Family, Friends and colleagues:

We’ve made a lot of friends on our Head First journey. A special thanks goes to Lou Barr,
Brett McLaughlin, and Sanders Kleinfeld for teaching us so much.

David: My thanks to Andy Parker, Joe Broughton, Carl Jacques, and Simon
Jones and the many other friends who have heard so little from me whilst I was busy
scribbling away.

Dawn: Work on this book would have been a lot harder without my amazing support
network of family and friends. Special thanks go to Mum and Dad, Carl, Steve, Gill,
Jacqui, Joyce, and Paul. I’ve truly appreciated all your support and encouragement.

The without-whom list:

Our technical review team did an excellent job of keeping us straight and making sure
what we covered was spot on.

Finally, our thanks to Kathy Sierra and Bert Bates for creating this extraordinary
series of books

   intro

safari books online

Safari® Books Online
When you see a Safari® icon on the cover of your favorite
technology book that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current
information. Try it for free at http://safari.oreilly.com.

this is a new chapter   1

Don't you just love the
deep blue C? Come on
in, the water's lovely!

getting started with c1

Diving in

Want to get inside the computers head? �
Need to write high-performance code for a new game? Program an Arduino? Or use

that advanced third-party library in your iPhone app? If so, then C’s there to help. C

works at a much lower level that most other languages, so understanding C gives you a

much better idea of what’s really going on. C can even help you better understand other

languages as well. So dive in, grab your compiler, and get started in no time.

2   Chapter 1

how c works

C is a language for small, fast programs
The C language is designed to create small, fast programs. It's
lower-level than most other languages; that means it creates code
that's a lot closer to what machines really understand.

Source

You start off by
creating a source
file. The source file
contains human-
readable C code.

1

#include <stdio.h>

int main()

{

 puts("C Rocks!");

 return 0;

}

Compile

You run your source
code through a compiler.
The compiler checks
for errors, and once it's
happy, it compiles the
source code.

2

> gcc rocks.c -o rocks
>

File Edit Window Help Compile

Output

The compiler creates a new
file called an executable. This
file contains machine code,
a stream of 1's and 0's that
the computer understands.
And that's the program you
can run.

3

The way C works
Computers really only understand one language - machine code, a
binary stream of 1s and 0'. You convert your C code into machine
code with the aid of a compiler.

C is used where speed and space are important.
Most operating systems are written in C. Most
other computer languages are also written in C.
And most games software is written in C.

you are here 4   3

getting started with c

Try to guess what each of these code fragments do.

Describe what you think the code does.
int card_count = 11;

if (card_count > 10)

 puts("The deck is hot. Increase bet.");

int c = 10;

while (c > 0) {

 puts("I must not write code in class");

 c = c - 1;

}

/* Assume name shorter than 20 chars. */

char ex[20];

puts("Enter boyfriend's name: ");

scanf("%s", ex);

printf("Dear %s.\n\n\tYou're history.\n", ex);

char suit = 'H';

switch(suit) {

case 'C':

 puts("Clubs");

 break;

case 'D':

 puts("Diamonds");

 break;

case 'H':

 puts("Hearts");

 break;

default:

 puts("Spades");

}

4   Chapter 1

fragments demystified

Don't worry if you don't understand all of this yet. Everything is
explained in greater detail further in the book.

int card_count = 11;

if (card_count > 10)

 puts("The deck is hot. Increase bet.");

int c = 10;

while (c > 0) {

 puts("I must not write code in class");

 c = c - 1;

}

/* Assume name shorter than 20 chars. */

char ex[20];

puts("Enter boyfriend's name: ");

scanf("%s", ex);

printf("Dear %s.\n\n\tYou're history.\n", ex);

char suit = 'H';

switch(suit) {

case 'C':

 puts("Clubs");

 break;

case 'D':

 puts("Diamonds");

 break;

case 'H':

 puts("Hearts");

 break;

default:

 puts("Spades");

}

Create an integer variable and set it to 11.
Is the count more than 10?
If so, display a message on the command prompt

An integer is a whole number.

This displays a string on the command prompt or terminal.

Create an integer variable and set it to 10.
As long as the value is positive...
...display a message...
...and decrease the count
The end of the code that should be repeated

The braces define a block statement.

This is a comment.
Create an array of 20 characters.
Display a message on the screen.
Store what the user enters into the array.
Display a message including the text entered

This will insert this string of characters here in place of the %s.

This means "store everything the
user types into the ex array".

Create a character variable, store the letter 'H'
Look at the value of the variable.
Is it 'C'?
If so, display the word "Clubs".
Then skip past the other checks.
Is it 'D'?
If so, display the word "Diamonds".
Then skip past the other checks.
Is it 'H'?
If so, display the word "Hearts".
Then skip past the other checks.
Otherwise...
Display the word "Spades"
This is the end of tests.

A switch statement checks a single variable for different values.

you are here 4   5

getting started with c

But what does a complete C program look like?
In order to create a full program, you need to enter your
code into a C source file. C source files can be created by any
text editor and their filenames usually end with .c.

Let's have a look at a typical C source file.

This is just a convention, but you should follow it.

/*

 * Program to calculate the number of cards in the shoe.

 * This code is released under the Vegas Public License.

 * (c)2014, The College Blackjack Team.

 */

#include <stdio.h>

int main()

{

 int decks;

 puts("Enter a number of decks");

 scanf("%i", &decks);

 if (decks < 1) {

 puts("That is not a valid number of decks");

 return 1;

 }

 printf("There are %i cards\n", (decks * 52));

 return 0;

}

So let's look at the main() function in a little more detail.

C programs normally begin with a comment.
The comment describes the purpose of the code in the file, and maybe
some license or copyright information. There's no absolute need to include
a comment here - or anywhere else in the file - but it's good practice and
what most C programmers will expect to find.

1

Next comes the
includes section.
C is a very, very small
language and it can do
almost nothing without
the use of external
libraries. You will need
to tell the compiler what
external code to use by
including header files
for the relevant libraries.
The header you will see
more than any other is
stdio.h. The stdio
library contains code
that allows you to read
and write data from and
to the terminal.

2

The last thing you find in a source file are the functions.
All C code runs inside functions. The most important function you will
find in any C program is called the main() function. The main()
function is the start point for all of the code in your program.

3

6   Chapter 1

main function

The main() Function Up Close
The computer will start running your program from the main()

function. The name is important - if you don't have a function called main, your
program won't be able to start.

The main function has a return type of int. So what does this mean? Well -
when the computer runs your program it will need to have some way of deciding
if the program ran successfully or not. It does this by checking the return value of
the main function. If the main function returns 0, this means that the program
was successful. If it returns any other value, it means that there was a problem.

int main()

{

 int decks;

 puts("Enter a number of decks");

 scanf("%i", &decks);

 if (decks < 1) {

 puts("That is not a valid number of decks");

 return 1;

 }

 printf("There are %i cards\n", (decks * 52));

 return 0;

}

The function name comes after the return type. That's followed by the function
parameters if there are any. Finally we have the function body. The function body
must be surrounded by braces.

Geek Bits
The printf() function is used to display formatted output. It
replaces format characters with the values of variables, like this:

printf("%s says the count is %i", "Ben", 21);

You can include as many parameters as you like when you call the printf()
function - but make sure you have a matching %-format character for each one.

If you want to check t
he

exit status of
 a program

type
echo %E

rrorLev
el%

in Windows or
echo $?

in Linux or the Mac

1st parameter.1st parameter will be inserted here as a string.

2nd parameter.2nd parameter will be inserted here as an integer.

This is the return type - it
should always be int for the
main function.

Because it's called 'main' the program will start here.

If we had any parameters, they'd be mentioned here.

The body of the
function is always
surrounded by braces.

you are here 4   7

getting started with c

/*

 * Program to evaluate face values.

 * Released under the Vegas Public License.

 * (c)2014 The College Blackjack Team.

 */

 main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 } else if (card_name[0] ==) {

 val = 10;

 } (card_name[0] ==) {

 } else {

 val = atoi(card_name);

 }

 printf("The card value is: %i\n", val);

 0;

}

Code Magnets
The College Blackjack Team were working on some code on the dorm fridge, but
someone mixed their magnets up! Can you re-assemble the code from the magnets?

else

'J'
ifint

val = 11

#include 'A' <stdio.h>

return

val = 10

#include

<stdlib.h> ;

;

8   Chapter 1

magnets unmixed

/*

 * Program to evaluate face values.

 * Released under the Vegas Public License.

 * (c)2014 The College Blackjack Team.

 */

 main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 } else if (card_name[0] ==) {

 val = 10;

 } (card_name[0] ==) {

 } else {

 val = atoi(card_name);

 }

 printf("The card value is: %i\n", val);

 0;

}

Code Magnets Solution
The College Blackjack Team were working on some code on the dorm fridge, but
someone mixed their magnets up! Can you re-assemble the code from the magnets?

else

'J'

if

int

val = 11

#include

'A'

<stdio.h>

return

val = 10

#include <stdlib.h>

;

;

Q: What does card_name[0]
mean?

A: It's the first character that
the user typed. So if they type "10",
card_name[0] would be '1'.

Q: Do you always write
comments using /* and */?

A: If your compiler also supports
C++ then you can begin a comment
with "//". The compiler treats the rest
of that line as a comment.

Q: C++? So that's not a C
comment then?

A: No. Although most compilers
will cope with it.

you are here 4   9

getting started with c

But how will we run the program?
C is a compiled language. That means the computer will not interpret the code
directly. Instead you will need to convert - or compile - the human-readable
source code into machine-readable machine code.

To compile the code you need a program called a compiler. One of the
most popular C compilers is the GNU Compiler Collection or gcc. gcc is
available on a lot of operating systems and it can compile lots of languages
other than C. Best of all - it's completely free.

Here's how you can compile and run the program using gcc:

Save the code from the Code Magnets exercise on the
opposite page in a file called cards.c.

1

Compile with gcc cards.c -o cards at a command
prompt or terminal.

2

Run by typing cards on Windows, or ./cards on Mac and
Linux machines.

3

Compile cards.c
to a file called cards.

Geek Bits

You can compile and run your code in a single step like this:

gcc test.c -o test && ./test
You should put
"test" instead
of "./test" on a
Windows machine.

This command will only run the new program if it compiles
successfully. If there's a problem with the compile, it will skip running
the program and simple display the errors on the screen.

Do this!

You should create the
cards.c file and compile
it now. We'll be working
on it more and more as
the chapter progresses.

cards.c

> gcc cards.c -o cards
>

File Edit Window Help Compile

> ./cards
Enter the card_name:

File Edit Window Help Compile

C source files usually end .c.

cards.c cards

&& here means 'and then if it's successful, do this...'

This will be cards.exe
if you're on Windows.

10   Chapter 1

test drive

Test Drive
Let's see if the program compiles and runs. Open up a command prompt
or terminal on your machine and try it out.

> gcc cards.c -o cards
> ./cards
Enter the card_name:
Q
The card value is: 10
> ./cards
Enter the card_name:
A
The card value is: 11
> ./cards
Enter the card_name:
7
The card value is: 7

File Edit Window Help 21

The program works!
Congratulations! You have compiled and run a C program. The gcc
compiler took the human-readable source code from cards.c and
converted it into computer-readable machine code in the cards program. If
you are using a Mac or Linux machine, the compiler will have created the
machine code in a file called cards. But on Windows, all programs need
to have a .exe extension, so the file will be called cards.exe.

Q: Why do I have to prefix the program with "./" when I run it on Linux and the Mac?

A: On Unix-style operating systems, programs are only run if you specify the directory where
they live or if their directory is listed in the PATH environment variable.

This line compiles the code and creates the cards program.
This line runs the program.
If you're on Windows don't
type the ./

Remember - you can
combine the compile and
run steps together (turn
back a page to see how).

Running the program again.

The user enters the name from a card...

...and the program displays
the corresponding value.

you are here 4   11

getting started with c

Wait - I don't get it. When
we ask the user what the name

of the card is we're using an
array of characters. An array of
characters???? Why? Can't we use
a string or something???

The C language doesn't support strings out
of the box.
C is a lower-level than most other languages and so instead
of strings, C normally uses something similar: an array of
single characters. If you've programmed in other languages
you've probably met an array before. An array is just a list of
things given a single name. So card_name is just a variable
name we use to refer to the list of characters entered at
the command prompt. We defined card_name to be a 2
character array so we can refer to the first and second character
as char_name[0] and char_name[1]. To see how
this works, let's take a deeper dive into the memory of the
computer's memory and see how C handles text...

But there are
a number of
C extension-
libraries that
do give you
strings.

12   Chapter 1

string theory

Strings Way Up Close
Strings are just character arrays. When C sees a string like this:

s="Shatner"

it reads it like it was just an array of separate characters:

s = {'S', 'h', 'a', ... }
This is how you define an array in C.

Each of the characters in the string is just an element in an array, which is
why you can refer to the individual characters in the string by using an index,
like s[0] and s[1].

Don't fall off the end of the string
But what happens when C wants to read the contents of the string? Say
it wants to print it out. Now in a lot of languages the computer keeps a
pretty close track on the size of an array, but C is lot lower-level than most
languages and it can't always work out exactly how long an array is. If C is
going to display a string on the screen, it needs to know when it gets to the
end of the character array. And it does this by adding a sentinal character.

The sentinel character is an additional character at the end of the string that
has the value '\0'. Whenever the computer needs to read the contents of
the string, it goes through the elements of the character array one at a time,
until it reaches '\0'. That means that when the computer see this:

'\0' is the character
with ASCII value 0.

s="Shatner"

it actually stores it in memory like this:

That's why in our code we had to define the card_name like this:

The card_name string is only ever going to record 1 or 2 characters, but because
strings end in a sentinal character we have to allow for an extra character in the array.

char card_name[3];

'\0' C knows
to stop
when it
sees '\0'.

S h a ...
s[0

]
s[3

]
s[2

]
s[1

]

S h a t
s[0

]
s[3

]
s[2

]
s[1

]

n e r \0
s[4

]
s[7

]
s[6

]
s[5

]

you are here 4   13

getting started with c

Q: Why are the characters numbered
from 0? Why not 1?

A: The index is an offset - it's a measure
of how far the character is from the first
character

Q: Why?

A: The computer will store the
characters in consecutive bytes of memory.
It can use the index to calculate the
location of the character. If it knows that
c[0] is at memory location 1,000,000 then
it can quickly calculate that c[96] is at
1,000,000 + 96.

Q: Why does it need a sentinel
character? Doesn't it know how long the
string is?

A: Usually it doesn't. C is not very good
at keeping track of how long arrays are -
and a string is just an array.

Q: It doesn't know how long arrays
are???

A: No. Sometimes the compiler
can work out the length of an array by
analyzing the code, but usually C relies on
you to keep track of your arrays.

Q: Does it matter if I use single
quotes of double quotes.

A: Yes. Single quotes are used for
individual characters, but double quotes
are always used for strings.

Q: So should I define my strings
using quotes (") or as explicit arrays of
characters?

A: Usually you will define strings using
quotes. They are called literal strings and
they are easier to type.

Q: Are there any differences between
literal strings and character arrays

A: Only one - literal strings are constant

Q: What does that mean?

A: It means that you can't change the
individual characters once they are created

Q: What will happen if I try?

A: It will depend upon the compiler, but
gcc will usually display a Bus Error

Q: What the heck's a bus error?

A: C will store literal strings in memory
in a different way. A bus error just means
that your program can't update that piece
of memory.

14   Chapter 1

do something

Two types of command
So far every command we've seen has fallen into one of two categories:

Do something
Most of the commands in C are statements. Simple statements are actions, they do things
and they tell us things. We've met statements that define variables, that read input from
the keyboard or display data to the screen.

split_hand(); This is a simple statement.

These commands form
a block statement
because they are
surrounded by braces.

Do something only if something is true
Control statements such as if check a condition before running the code:

if (value_of_hand <= 16)

 hit();

else

 stand();

This is the condition.

if statements typically need to do more than one thing when a condition
is true, so they are often used with block statements:

if (dealer_card == 6) {

 double_down();

 hit();

}

{

 deal_first_card();

 deal_second_card();

 cards_in_hand = 2;

}

Sometimes we group statements together to create block statements. Block statements are
groups of commands surrounded by braces.

Run this statement if the condition is false.

Run this statement if the condition is true.

BOTH of these commands will run if the condition is true. The commands are grouped inside a single block statement.

if (x == 2) {

 puts("Do something");

}

most C programmers write:

if (x == 2)

 puts("Do something");

Do you need braces?
Block statements allow you to
treat a whole set of statements as
if they were a single statement.
You see them a lot in conditions
and loops.

But most C programs omit the
braces if you just run a single line
of code. So instead of writing:

you are here 4   15

getting started with c

/*

 * Program to evaluate face values.

 * Released under the Vegas Public License.

 * (c)2014 The College Blackjack Team.

 */

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 val = 10;

 } else if (card_name[0] == 'J') {

 val = 10;

 } else if (card_name[0] == 'A') {

 val = 11;

 } else {

 val = atoi(card_name);

 }

 printf("The card value is: %i\n", val);

 return 0;

}

I've had a thought.
Could this check if
a card value is in a
particular range? That
might be handy...

Here's the code so far

16   Chapter 1

page goal header

Hey - how's it going? You

look to me like a smart guy.

And I know - 'cause I'm a

smart guy too! Listen - I'm

onto a sure thing here, and

Eddie's a nice guy, so Eddie's

going to let you in on it.

See - I'm an expert in card

counting. The Capo di tutti

capi. What's card counting,

you say? Well - to me, it's a

career!

Seriously, card counting is

way of improving the odds

when you play blackjack. In

blackjack, if there are plenty

of high-value cards left in

the shoe, then the odds are

slanted in favor of the player

- that's you!

Card counting helps you

keep track of the number of

high-value cards left. Say

you start off with a count of

0. Then the dealer leads with

a Queen - that's a high card.

That's one less available in

the deck, so you reduce the

count by one:

It's a queen ==> count - 1

But if it's a low card, like a 4,

the count goes up by one:

It's a four ==> count + 1

High cards are 10s and the

face cards (Jack, Queen,

King). Low cards are 3s, 4s,

5s and 6s.

You keep doing this for every

low card and every high

card until the count gets real

high, then you lay on cash

in your next bet and bad-a-

bing! Soon you'll have more

money than my third wife!

If you'd like to learn more,

then enroll today in my

Blackjack Correspondence

School. Learn more about

card counting as well as:

* How to use the Kelly

Criterion to maximize the

value of your bet

* How to avoid getting

whacked by a pit boss

* How to get cannoli stains

off a silk suit

* Things to wear with plaid

For more information,

contact Cousin Vinny c/o the

Blackjack Correspondence

School

you are here 4   17

getting started with c

Card-counting? In C?
Card counting is a way to increase your chances of winning at blackjack.
By keeping a running count as the cards are dealt, a player can work out
the best time to place large bets and the best time to place small bets. Even
though it's a powerful technique, it's really quite simple.

Evaluate the card
Is it between 3 and 6 (inclusive)? Increase count by 1Otherwise

 Is it a 10, J, Q or K? Decrease the count by 1

We've already got
code that does this.

How difficult would this be to write in C? We've looked at
how to make a single test, but the card-counting algorithm
needs to check multiple conditions - we need to check that
a number is >= 3 as well as checking that it's <= 6.

We need a set of operations that will allow
us to combine conditions together.

We can just use a
variable for this.

We've got to check for a few values here. Or have we...?

How do we check that
it is >= 3 and <= 6?
Is that two checks?

18   Chapter 1

what condition the condition is in

There's more to booleans than equals...
So far we've looked at if statements that check if a single condition is true, but
what if we want to check several conditions? Or check if a single condition is not
true?

&& checks two conditions are true
The and operator (&&) evaluates to true, only if both conditions given to it are
true.

if ((dealer_up_card == 6) && (hand == 11))

 double_down();

Both of these conditions need to be
true for this piece of code to run

The and operator is efficient: if the first condition is false then the computer won't
bother evaluating the second condition. It knows that if the first condition is false,
then the whole condition must be false.

II checks one of two conditions is true
The or operator (||) evaluates to true, if either condition given to
it is true.

if (cupcakes_in_fridge || chips_on_table)

 eat_food();

If the first condition is true, the computer won't bother evaluating
the second condition. It knows that if the first condition is true, the
whole condition must be true.

Either can be true.

! flips the value of a condition
! is the not operator. It reverses the value of a condition.

if (!brad_on_phone)

 answer_phone();

Geek Bits
In C, boolean values
are represented by

numbers. To C, the number 0 is
the value for false. But what's the
value for true? Anything that is
not equal to 0 is treated as true.
So there is nothing wrong in
writing C code like this:

In fact, C programs often use this
as a short-hand way of checking
if something is not zero

int people_moshing = 34;

if (people_moshing)

 take_off_glasses();

! means "not"

you are here 4   19

getting started with c

You are going to modify the program so that it can be used for card-counting. It will need to
display one message if the value of the card is from 3 to 6. It will need to display a different
message if the card is a 10, Jack, Queen or a King.

int main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 val = 10;

 } else if (card_name[0] == 'J') {

 val = 10;

 } else if (card_name[0] == 'A') {

 val = 11;

 } else {

 val = atoi(card_name);

 }

 /* Check if the value is 3 to 6 */

 if

 puts("Count has gone up");

 /* Otherwise check if the card was 10, J, Q or K */

 else if

 puts("Count has gone down");

 return 0;

}

The ANSI C standard has no value for true
and false. C programs treat the value 0 as
false, and any other value as true. The C99
standard does allow you to use the words true
and false in your programs - but the compiler
treats them as the values "1" and "0" anyway.

The Polite Guide to Standards

20   Chapter 1

cards counted

Q: Why not just "|" and "&"?

A: You can use "&" and "|" if you want.
The "&" and "|" operators will always
evaluate both conditions, but "&&" and

"||" can often skip the second condition.

Q: So why do the "&" and "|"
operators exist?

A: Because they do more than simply
evaluate logical conditions. They perform
bitwise operations on the individual bits
of a number.

Q: Huh? What do you mean?

A: Well 6 & 4 == 4, because if you
checked which binary digits are common
to 6 (110 in binary) and 4 (100 in binary,
you get 4 (100).

You are going to modify the program so that it can be used for card-counting. It will need to
display one message if the value of the card is from 3 to 6. It will need to display a different
message if the card is a 10, Jack, Queen or a King.

int main()

{

 char card_name[3];

 puts("Enter the card_name: ");

 scanf("%2s", card_name);

 int val = 0;

 if (card_name[0] == 'K') {

 val = 10;

 } else if (card_name[0] == 'Q') {

 val = 10;

 } else if (card_name[0] == 'J') {

 val = 10;

 } else if (card_name[0] == 'A') {

 val = 11;

 } else {

 val = atoi(card_name);

 }

 /* Check if the value is 3 to 6 */

 if

 puts("Count has gone up");

 /* Otherwise check if the card was 10, J, Q or K */

 else if

 puts("Count has gone down");

 return 0;

}

((val > 2) && (val < 7))

(val == 10)

There are a few
ways of writing
this condition.

Did you spot that you
just needed a single
condition for this?

you are here 4   21

getting started with c

Test Drive
Let's see what happens when we compile and run the program now:

> gcc cards.c -o cards && ./cards
Enter the card_name:
Q
Count has gone down

> ./cards
Enter the card_name:
8

> ./cards
Enter the card_name:
3
Count has gone up

>

File Edit Window Help FiveOfSpades
This line compiles and runs the code.

The code works. By combining multiple conditions with a boolean
operator we are to check for a range of values rather than a single
value. You now have the basic structure in place for a card counter.

Stealthy communication device.

We run it a
few times to
check that the
different value
ranges work.

The computer says the
card was low. The count
went up! Raise the bet!
Raise the bet!

22   Chapter 1

interview with gcc

Head First: May I begin by thanking you gcc for
finding time in your very busy schedule to speak to
us.

gcc: That's not a problem my dear boy. A pleasure
to help.

Head First: gcc, you can speak many languages, is
that true?

gcc: I am fluent in over six million forms of
communication...

Head First: Really?

gcc: Just teasing. But I do speak many languages. C,
obviously, but also C++ and Objective C. I can get
by in Pascal, Fortran, PL/I and so forth. Oh - and I
have a smattering of Go...

Head First: And on the hardware side, you can
produce machine code for many, many platforms?

gcc: Virtually any processor. Generally when a
hardware engineer creates a new type of processor
one of the first things they want to do is get some
form of me running on them.

Head First: How have you achieved some
incredible flexibility?

gcc: My secret, I suppose, is that there are two sides
to my personality. I have a front-end, a part of me
that understands some type of source code

Head First: Written in a language such as C?

gcc: Exactly. My front end can convert that
language into an intermediate code. All of my
language front-ends produce the same sort of code.

Head First: You say there are two sides to your
personality?

gcc: I also have a back-end - a system for converting
that intermediate code into machine code that is
understandable on many platforms. Add to that my
knowledge of the particular executable file formats
for just about every operating system you've ever
heard of...

Head First: And yet, you are often described as a
mere translator. Do you think that's fair? Surely that's
not all you are?

gcc: Well of course I do a little more than simple
translation. For example I can often spot errors in
code.

Head First: Such as?

gcc: Well I can check the obvious things such as
code like mis-spelling variable names. But I also
look for subtler things, such as the redefinition of
variables. Or I can warn the programmer if they
choose to name variables after existing functions and
so on.

Head First: So you check code quality as well then?

gcc: Oh yes. And not just quality - but also
performance. If I discover a section of code inside
a loop that could work easily as well outside a loop I
can very quietly move it.

Head First: You do rather a lot?

gcc: I like to think I do. But in a quiet way.

Head First: gcc - thank you.

The Compiler Exposed
This week’s interview:
What Has gcc Ever Done For Us?

you are here 4   23

getting started with c

BE the Compiler
Each of the C files on this page
represents a complete source file. Your
job is to play compiler and determine

whether each of these files
will compile, and if not,
why not. For extra bonus
points, say what you think
the output of each compiled

file will be when run, and whether you
think the code is working as intended.

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");

 return 0;
}

D

24   Chapter 1

code compiled

BE the Compiler Solution
Each of the C files on this page
represents a complete source file. Your
job is to play compiler and determine

whether each of these files
will compile, and if not,
why not. For extra bonus
points, say what you think
the output of each compiled

file will be when run, and whether you
think the code is working as intended.

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

A

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");
 }
 return 0;
}

B

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1)
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else {
 puts("Ace!");
 }
 return 0;
}

C

#include <stdio.h>

int main()
{
 int card = 1;
 if (card > 1) {
 card = card - 1;
 if (card < 7)
 puts("Small card");
 else
 puts("Ace!");

 return 0;
}

D

The code compiles. The
program displays "Small
card". But it doesn't work
properly because the else is
attached to the wrong if.

Code compiles. The
program displays nothing
and is not really working
properly because the else
matches to the wrong if.

The code compiles. The
program displays "Ace!"
and is properly written.

The code won't compile
because the braces are
not matched.

you are here 4   25

getting started with c

What's the code like now?

int main()
{
 char card_name[3];
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 if (card_name[0] == 'K') {
 val = 10;
 } else if (card_name[0] == 'Q') {
 val = 10;
 } else if (card_name[0] == 'J') {
 val = 10;
 } else if (card_name[0] == 'A') {
 val = 11;
 } else {
 val = atoi(card_name);
 }
 /* Check if the value is 3 to 6 */
 if ((val > 2) && (val < 7))
 puts("Count has gone up");
 /* Otherwise check if the card was 10, J, Q or K */
 else if (val == 10)
 puts("Count has gone down");
 return 0;
}

C programs often need to check the same value several
times and then perform very similar pieces of code for
each case.
Now you can just use a sequence of if statements - and that will probably
be just fine. But C gives you an alternative way of writing this kind of logic.

C can perform logical tests with the switch statement.

Hmmm... is there something we can do with
that sequence of if statements? They're all
checking the same value - card_name[0] - and most
of them are setting the val variable to 10. I wonder
if there's a more efficient way of saying that in C?

26   Chapter 1

switch statement

Pulling the ol' switcheroo
Sometimes when you're writing conditional logic, you need to
check the value of the same variable over and over again. To
prevent you have to write lots and lots of if statements, the C
language gives you another option: the switch statement

The switch statement is kind of like an if statement, except it
can test for multiple values of a single variable:

switch(train) {

case 37:

 winnings = winnings + 50;

 break;

case 65:

 puts("Jackpot!");

 winnings = winnings + 80;

case 12:

 winnings = winnings + 20;

 break;

default:

 winnings = 0;

}

If the train == 37, add 50 to the
winnings then skip to the end.

When the computer hits a switch statement, it checks
the value it was given, and then looks for a matching case.
When it finds one, it runs all of the code that follows it until
it reaches a break statement. The computer keeps going
until it is told to break out of the switch statement.

For any other value of train, set the winnings back to ZERO.

If the train == 12 then
just add 25 to the winnings.

If the train == 65 then add 80 to
the winnings AND THEN also add 20
to the winnings, then skip to the end.

you are here 4   27

getting started with c

Let's look at that section of your cards.c program again:

int val = 0;

if (card_name[0] == 'K') {

 val = 10;

} else if (card_name[0] == 'Q') {

 val = 10;

} else if (card_name[0] == 'J') {

 val = 10;

} else if (card_name[0] == 'A') {

 val = 11;

} else {

 val = atoi(card_name);

}

Do you think you can re-write this code using a switch statement? Write your answer below:

28   Chapter 1

code switched

int val = 0;

if (card_name[0] == 'K') {

 val = 10;

} else if (card_name[0] == 'Q') {

 val = 10;

} else if (card_name[0] == 'J') {

 val = 10;

} else if (card_name[0] == 'A') {

 val = 11;

} else {

 val = atoi(card_name);

}

Here's the code rewritten using a switch statement.

int val = 0;
switch(card_name[0]) {
case 'K':
case 'Q':
case 'J':
 val = 10;
 break;
case 'A':
 val = 11;
 break;
default:
 val = atoi(card_name);
}

Q: Why would I use a switch
statement instead of an if?

A: If you are performing multiple
checks on the same variable then you
might want to use a switch statement.

Q: What are the advantages of
using a switch statement.

A: There are several. Firstly: clarity. It
is clear that an entire block of code is
processing a single variable. That's not
so obvious if you just have a sequence of
if statements. Secondly, you can use fall-
through logic to re-use sections of code
for different cases.

Q: Does the switch statement have
to check a variable? Can't it check a
value.

A: Yes it can. The switch statement will
simply check that two values are equal.

Q: Can I check strings in a switch
statement.

A: No - you can't use a switch
statement to check a string of characters
or any kind of array. The switch statement
will only check a single value.

�� switch statements can replace a
sequence of if statements

�� switch statements check a
single value

�� The computer will start to run
the code at the first matching
case statement

�� It will continue to run until it
reaches a break or gets to the
end of the switch statement

�� Check that you've included
breaks in the right place -
otherwise your switches will be
buggy.

you are here 4   29

getting started with c

Sometimes once is not enough...
We've learned a lot about the C language, but there are still some
things we need to cover. We've seen how to write programs for a lot
of different situations, but there is one really fundamental thing that
we haven't really look at yet. What if you want your program to do
something again and again and again?

2 cards???
Oh crap...

Using while loops in C
Loops are a special type of control statement. A control statement
decides if a section of code will be run, but a loop statement decides
how many times a piece of code will be run.

The most basic kind of loop in C is the while loop. A while loop
runs code over and over and over so long as some condition remains true.

while (<some condition>) {

 ... /* Do something here */

}

Checks the condition before running the body

When it gets to the end of the body, the computer checks if the loop-condition is still true. If it is, the body code runs again.

If you only have one line in the
body, you don't need the braces.The body is between

the braces.

while (more_balls)

 keep_juggling();

But what if you need to stop looping
somewhere inside the loop body?

30   Chapter 1

skip to the loop

You use break to breakout...
A while loop checks the condition before it runs the loop body. But
what if somewhere inside the code you decide that you don't need to
run the loop any more?

Fortunately there's a way of skipping out of the loop immediately -
we can use the break statement.

while(feeling_hungry) {

 eat_cake();

 if (feeling_queasy) {

 /* Break out of the while loop */

 break;

 }

 drink_coffee();

}

A break statement will break you straight out of the current
loop, skipping whatever follows it in the loop body. breaks can
be useful as they're sometimes the simplest and best way to end a
loop. But you might want to avoid using too many because they
can make the code a little harder to read.

	 The break
statement is
used to break
out of loops
and also inside

switch statements.

Be careful that you know what
you're breaking out of when
you're breaking out.

Tales from
the Crypt

breaks don't break if
statements

On January 15th, 1990 AT&T's
long distance telephone system
crashed and 60,000 people lost
their phone service. The cause?
A developer working on the C
code used in the exchanges
tried to use a break to break out
of an if statement. But breaks
don't break out of ifs. Instead
the program skipped an entire
section of code and introduced
a bug that interrupted 70 million
phone calls over 9 hours... Let's test out your new-found loop-mojo.

,,,and continue to continue
If you want to skip the rest of the loop body and go back to the
start of the loop, then the continue statement is your friend:

while(feeling_hungry) {

 if (not_lunch_yet) {

 /* Go back to the loop condition */

 continue;

 }

 eat_cake();

}

"break" skips out of
the loop immediately.

"continue" takes you back to the start of the loop.

you are here 4   31

getting started with c

Mixed
Messages

A short C program is listed below. One block of the program is missing. Your
challenge is to match the candidate block of code (on the left), with the output
that you'd see if the block were inserted. Not all of the lines of output will be
used, and some of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching command-line output.

y = x - y;

y = y + x;

y = y + 2;
if (y > 4)
 y = y - 1;

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3)
 x = x - 1;
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

#include <stdio.h>

int main()
{
 int x = 0;
 int y = 0;
 while (x < 5) {

 printf("%i%i ", x, y);
 x = x + 1;
 }
 return 0;
}

Candidates: Possible output:

Candidate code goes here.

Match each
candidate with
one of the
possible outputs.

32   Chapter 1

messages unmixed

Mixed
Messages
Solution

A short C program is listed below. One block of the program is missing. Your
challenge is to match the candidate block of code (on the left), with the output
that you'd see if the block were inserted. Not all of the lines of output will be
used, and some of the lines of output might be used more than once. Draw lines
connecting the candidate blocks of code with their matching command-line output.

y = x - y;

y = y + x;

y = y + 2;
if (y > 4)
 y = y - 1;

x = x + 1;
y = y + x;

if (y < 5) {
 x = x + 1;
 if (y < 3)
 x = x - 1;
}
y = y + 2;

22 46

11 34 59

02 14 26 38

02 14 36 48

00 11 21 32 42

11 21 32 42 53

00 11 23 36 410

02 14 25 36 47

#include <stdio.h>

int main()
{
 int x = 0;
 int y = 0;
 while (x < 5) {

 printf("%i%i ", x, y);
 x = x + 1;
 }
 return 0;
}

Candidates: Possible output:

Candidate code goes here.

you are here 4   33

getting started with c

Now that you know how to create while loops, modify the program to keep a running count
of the card game. Display the count after each card and end the program if the player types 'Q'.
Display an error message if the player enters types a bad card value like 11 or 24.

#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 int count = 0;
 while () {
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 switch(card_name[0]) {
 case 'K':
 case 'Q':
 case 'J':
 val = 10;
 break;
 case 'A':
 val = 11;
 break;
 case 'X':

 default:
 val = atoi(card_name);

 }
 if ((val > 2) && (val < 7)) {
 count++;
 } else if ((val > 9) && (val < 11)) {
 count--;
 }
 printf("Current count: %i\n", count);
 }
 return 0;

}

You need to stop if they enter Q.

What will you do here?

You need display an error if the
val is not in the range 1 to 10.
You should also skip the rest of
the loop body and try again.

34   Chapter 1

running count

Now that you know how to create while loops, modify the program to keep a running count
of the card game. Display the count after each card and end the program if the player types 'Q'.
Display an error message if the player enters types a bad card value like 11 or 24.

We need another contin
ue here

because we want to keep looping.

#include <stdio.h>
#include <stdlib.h>
int main()
{
 char card_name[3];
 int count = 0;
 while () {
 puts("Enter the card_name: ");
 scanf("%2s", card_name);
 int val = 0;
 switch(card_name[0]) {
 case 'K':
 case 'Q':
 case 'J':
 val = 10;
 break;
 case 'A':
 val = 11;
 break;
 case 'X':

 default:
 val = atoi(card_name);

 }
 if ((val > 2) && (val < 7)) {
 count++;
 } else if ((val > 9) && (val < 11)) {
 count--;
 }
 printf("Current count: %i\n", count);
 }
 return 0;

}

card_name[0] != 'X'

continue;

if ((val < 1) || (val > 10)) {
 puts("I don't understand that value!");
 continue;
}

We need to check if the first character was a 'Q'.

break wouldn't break us out of the loop, because we're inside
a switch statement. We need a continue to go back and check
the loop condition again.

This is just one way of
writing this condition.

you are here 4   35

getting started with c

Test Drive
Now the card counting program is finished, it's time to take it for a
spin. What do you think? Will it work?

> gcc card_counter.c -o card_counter && ./card_counter
Enter the card_name:
4
Current count: 1
Enter the card_name:
K
Current count: 0
Enter the card_name:
3
Current count: 1
Enter the card_name:
5
Current count: 2
Enter the card_name:
23
I don't understand that value!
Enter the card_name:
6
Current count: 3
Enter the card_name:
5
Current count: 4
Enter the card_name:
3
Current count: 5
Enter the card_name:
X

File Edit Window Help GoneLoopy

Remember - you don't need
"./" if you're on Windows.

The card counting program works!
You've completed your first C program. By using the power of C
statements, loops and conditions you've created a full functioning card
counter.

Great job!

By betting big when
the count was high - I
made a fortune!

The count is
increasing!

We now check
if it looks
like a correct
card value.

This will compile
and run the
program.

Disclaimer: Using a computer for card-counting is illegal in a lot of
states, and those casino guys can get kinda gnarly. So don't do it, OK?

36   Chapter 1

c toolbox

You can use the && operator on the command line to only run your program if it compiles

Your C Toolbox

You’ve got Chapter 1 under
your belt and now you’ve

added C basics to your tool box.
For a complete list of tooltips in the

book, see Appendix X.

CH
AP

T
ER

 1

Simple
statements
are
commands Block

statements are
surrounded by
{ and }

if statements run code if
something is
true

switch statements
efficiently check
for multiple values
of a variable

Every program needs a main function

#include includes
external code
for things
like input and
output

You can combine
conditions
together with
&& and ||

You need to
compile your C

program before

you run it

gcc is the
most popular
C compiler

Your source files should have a name ending in ".c"

-o specifies
the output
file

this is a new chapter   37

...and of course,
Mommy never lets me
stay out after 6pm.

memory and pointers2

What are you
pointing at?

If want to kick butt with C, you need to understand how C
handles memory.�
The C language gives you a lot more control over how your program uses the computer’s

memory. In this chapter, you’ll strip back the covers and see exactly what happens when

you read and write variables. You’ll learn how arrays work, how to avoid some nasty

memory SNAFUs, and most of all, you’ll see how mastering pointers and memory

addressing is key to becoming a kick-ass C programmer.

Thank heavens my
boyfriend variable isn't
in read-only memory.

38   Chapter 2

taking stock

The Head First Lounge has a new champagne bar
Things have always been pretty swinging down in the Head First Lounge.
But the guys are cracking open a whole new crate of fun with the Head
First Lounge Champagne Bar.

Thing is, this has given the guys a little problem...

In order to prevent the guys running out of stock, they need a
stock-taking program. It’s a little like some of the code you’ve
written so far. Here’s what the program needs to do:

Sometimes we kind of lose track of the
champagne we have in stock. It’s hard
to keep count when you’re tending bar
and dancing the merengue, Baby!

We’ll start with 30 bottles

 - that’s about 180 glasses

While there’s still some fizz:

 Display the current stock

 Enter the number of glasses

 ordered

 Adjust the stock

 Then just go round again

memory and pointers

you are here 4   39

"%i glasses left\n"

order_string
order

stock

"%2s"

Code Magnets
The guys started to write the code on the fridge door. Unfortunately they discovered
some tequila inside the fridge, the magnets got a little mixed up. Now the program
no longer works. See if you can reassemble the magnets and get the program
working again.

stock

order

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int stock = 180;

 char order_string[3];

 int order;

 while(stock > 0) {

 printf(,);

 scanf(,);

 order = atoi();

 stock = - ;

 printf("You ordered %i glasses\n",);

 }

 puts("We’re out of stock, baby!");

 return 0;

}

40   Chapter 2

magnets unmixed

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int stock = 180;

 char order_string[3];

 int order;

 while(stock > 0) {

 printf(,);

 scanf(,);

 order = atoi();

 stock = - ;

 printf("You ordered %i glasses\n",);

 }

 puts("We’re out of stock, baby!");

 return 0;

}

Code Magnets Solution
The guys started to write the code on the fridge door. Unfortunately they discovered
some tequila inside the fridge, the magnets got a little mixed up. Now the program
no longer works. See if you can reassemble the magnets and get the program
working again.

"%i glasses left\n"

order

stock

"%2s"

stock

order

order_string

Once we run out of champagne, break the bad news.

We begin with 180 glasses in stock.

This string will allow use to enter
a number of up to 2 digits.

Display the remaining
glasses in stock.

Read a 2-character string for the order.

Convert that string into
a number called 'order'. Subtract order from the stock.

order_string

chapter title here

Test Drive
OK - it's time to compile the code and take it for a test drive.

> gcc champagne.c -o champagne && ./champagne
180 glasses left
20
You ordered 20 glasses
160 glasses left
10
You ordered 10 glasses
150 glasses left
60
You ordered 60 glasses
90 glasses left
90
You ordered 90 glasses
We're out of stock, baby!
>

File Edit Window Help Hic

Bummer.

Great news!
It looks like the program works. It takes the champagne orders one
at a time, and once an order uses up all of the remaining glasses, it
tells the bar tender.

Wow, this will be really useful. We'll be
able to order up some more from the cellar
as soon as we run out. Just in time for the
Friends of Italian Opera party tonight!

Let's go to the party!
Not a moment too soon! Some of these Italian Opera buffs
can turn kinda nasty if they can't get a drink.

We begin by
compiling the code. This will run

the program
after
compiling it.

This is the initial stock.
Every time we enter
an order...

...the stock goes down...
...until...

...chug, chug, chug...

you are here 4   41

42   Chapter 2

a bug in the glasses

Then someone ordered 100 glasses...
Everything was going well until....

Suddenly there was no more
champagne! Next thing I know, this
big opera buff gets angry... it all goes
dark... and I wake up in the infirmary.

It looks like there's a bug in the code. Somewhere. Speaking
to the guys, and assembling the events from the police
reports, it looks like the program did something like this:

> ./champagne
180 glasses left
20
You ordered 20 glasses
160 glasses left
60
You ordered 60 glasses
100 glasses left
100
You ordered 10 glasses
90 glasses left
You ordered 0 glasses
90 glasses left
40

File Edit Window Help HicThe program started OK.

The first few orders went fine.

There were 100 glasses left
when someoneone ordered 100.

But why did the order only go down by 10?
And what's this extra order for
"0"??? No one ordered 0...!?!?

This was the big guy's order - but by this time all the drink had gone. The guys behind the bar entered a world of pain...

Something very strange was happening in the program. The stock
level had dropped to 100 glasses at just the moment that someone
ordered 100 glasses. That should have reduced the stock level to 0...
but instead it only reduced it by 10.

Can you figure out what happened? It looks like the problems started when
the program thought an order for 100 was an order for only 10 glasses.
What do you think happened?

memory and pointers

you are here 4   43

Let's see what's happening
Let's take a little closer look at that scanf() line:

char order_string[3];

...

scanf("%2s", order_string);

We're going to enter a 2-character
string into order_string.

order_string is 2 characters + the string terminator.

scanf() reads the characters that the user enters, and then
stores them into a the 3-character string called order_string.
Remember - strings always need an extra termination character, so a
3-character array is used to store 2 characters.

To make sure that the user doesn't enter more characters than the
array can hold, we pass the scanf() function a format string with
the value %2s - which means only accept two characters.

But what if we enter more than two characters?
When someone enters a value with more than two characters
such as 100, we have a problem. scanf() has been told to only
accept a maximum of two characters. It only puts the first two
characters in the order_string array.

And that's the problem

Even though the user entered "100", the order_string array
was set to "10". But what did scanf() do with the final "0" in

"100"? Well - it saved it up until the next time it was called and then
it put it into the order_string array.

That's why the stock was adjusted by 10 instead of 100, and why
there was that mysterious order for "0" - even though nothing was
typed in the second time.

So the problem is caused because the order_string array only
allows the user to enter up to 2-characters in it. Question is - how do
we fix it?

90

09 \0

A 2-character string
fits just fine.

100

01 \0

Only the first
two characters
fit in the array
when scanf() is
called.

0

0 \0

The remaining
character gets
stored the next
time scanf() is
called.

44   Chapter 2

establishing order

Cubicle conversation

Frank: Well the string is not long enough to accept a number over
99.

Joe: No - what I mean is, I don't see why that is such an issue. If they
get an order for more than 99 glasses, can't they just split it?

Jill: You mean if the is 140, then have two orders of 80 and 60?

Joe: Yeah - exactly.

Frank: That's changing the way the program works. I think the
users will want to enter the real order number. But it's no problem.
We just need to make the array one character longer. That means
they can enter values up to 999.

Jill: Sure - that will fix it in this case. But what about generally?
What if some other program needs people to enter numbers with 6
digits, 7 digits or whatever.

Frank: That's a good point. It would be nice if there was a way to
say "Just get the user to enter an integer"

Joe: Well we could if we knew what values an int variable accepted.
That's where the value will be stored after all.

Jill: Oh yeah - in that order variable.

Frank: Well to do that we'd just need to know how big a number we
can store in an int variable.

Jill: That shouldn't be too hard to figure out. So we could fix the
program for now by just making the order_string array one
character longer, like this:

	 char order_string[4];

	 ...

	 scanf("%3i", order_string);

But if we want a fix that will work for all programs, we could size the
string so that it can cope with any number that will fit into an int
variable. We could do that if we knew how big int numbers can be.

I really don't see
what the problem is.

Frank Jill Joe

#include <stdio.h>
#include <limits.h>

int main()
{
 printf(this machine an int takes up
 printf("And ints can

}

chapter title here

So how big is an int?
Remember we said that C was a little more low-level than most other
languages? When you program in C, you have to think a little more about the
hardware you are using than if you were using a language, say, Java. And the
hardware is really important because the maximum size of an integer
depends upon the machine you are using.

On some machines, an integer is stored as 4 bytes. That will let you store
numbers between the values:

10000000 00000000 00000000 00000000

and

01111111 11111111 11111111 11111111

There are 4 bytes - which is 32 bits.

That's +2147483647.

		� Don't worry
if you don't
know a lot
about binary
numbers.

You just need to know that the
more bits you can use to store
a number, then the greater the
range of numbers you can store.

The problem is that if your machine uses 16-bits for an int or 64-bits or even
128-bits, then you might not know exactly what range of numbers you can use.

Fortunately C gives you a little help. First of all, you can use the sizeof()
operator to check how many bytes an integer takes up. Secondly, you can look
at special values called INT_MIN and INT_MAX to find out what range of
numbers you can use:

That's -2147483648.

These numbers are in binary.

You need limits.h to get the INT_MIN and INT_MAX values.

That's a good point - we actually want an
int value and we shouldn't have to get too
hung up on the number of characters the
user types in.
Fortunately the scanf() function has a way of letting
the user enter ints directly - without needing to say how
many characters it might take.

Are you kidding me? We just want
someone to enter a number from the
command line and then store it in an int.
I don't care how big the string needs
to be. Just give me an int!

you are here 4   45

46   Chapter 2

accept an integer

scanf() lets you enter numbers directly
So far we've only used scanf() to enter string values. But it can do so
much more. Remember that the first value we pass to scanf() is a
format string that says what kind of data the user will be entering. By
changing the format string, we can tell scanf() to accept some other
data type, like an integer.

Once the scanf() function has been called, the cat variable will set
to the number the user entered. You can see that this is a lot simpler
than storing things in a string first. We don't need to know how many
characters to deal with. We don't have to check ranges, or think about
binary numbers or worry about what machine we are running on, or any
of that stuff.

That means that all of that complex information about how long integers
are, how many characters the user might enter on the command and all
that other stuff is dealt with by scanf().

So let's say we want to enter a value into a variable called cat:

int cat;

puts("Enter the number of ways to skin a cat");

scanf("%i", &cat);

printf("Number of ways = %i", cat);

For an integer
you need to put
a "&" at the
front of the
variable name.

scanf("%3s", ...) scanf("%i", ...)

I'll just ask the user for a
three character string. Three
characters and that's my limit.

I don't care about the
details. Just gimme an
int value.

The format string tells scanf()
what to expect and accept.

146 146

I don't like the
way this is heading...

cat

...and the cat variable is set to 146.
The user types
in 146...

chapter title here

Now that you know how to enter numbers directly into int variables, take another look at the
program and see if you can fix it to avoid the ordering problem.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int stock = 180;

 char order_string[3];

 int order;

 while(stock > 0) {

 printf("%i glasses left\n", stock);

 scanf("%2s", order_string);

 order = atoi(order_string);

 stock = stock - order;

 printf("You ordered %i glasses\n", order);

 }

 puts("We're out of stock, baby!");

 return 0;

}

Use a pencil to modify the code.

So - do you think you
could fix my program now?
It's another Opera night
tonight and I'm on the bar...

you are here 4   47

48   Chapter 2

order established

Now that you know how to enter numbers directly into int variables, take another look at the
program and see if you can fix it to avoid the ordering problem.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int stock = 180;

 char order_string[3];

 int order;

 while(stock > 0) {

 printf("%i glasses left\n", stock);

 scanf("%2s", order_string);

 order = atoi(order_string);

 stock = stock - order;

 printf("You ordered %i glasses\n", order);

 }

 puts("We're out of stock, baby!");

 return 0;

}

scanf("%i", &order);

We no longer need the order_string.

These two lines read the string,
so they can go.

Now we just need this line to read the user input direct into the order variable.

Q: So integers are different size on
different machines? Why's that?

A: ints are used for quick general
purpose calculations. In order to make the
calculations run as quickly as possible, C
uses the same kinds of numbers that the
processor uses.

Q: Does that really make a big
difference?

A: It can. If numbers are the same size
as the registers in a central processing unit,
then it might be possible to avoid some
slow processes, like looking up values from
memory.

Q: What's the down side to have
ints of different sizes.

A: Portability can be a problem.

Q: So what I really want to use an
integer of a particular size. Can I do
that?

A: Yes. If you include the
<inttypes.h> file, then you will
have types like int8_t for 8 bits and
int16_t for 16 bits and so on.

memory and pointers

you are here 4   49

Test Drive
So let's take the fixed code out on the road. And we already have a great
test case. If we run the exact same orders, we can see if we've fixed the bug.

> ./champagne
180 glasses left
20
You ordered 20 glasses
160 glasses left
60
You ordered 60 glasses
100 glasses left
100
You ordered 100 glasses
We're out of stock, baby!

File Edit Window Help Hic

When we entered 100
before, the code thought
we'd entered 10.
This time it knows it's 100.

It works!
By using the extra formats scanf() supports we are able to accept
different data types straight from the command line. Not only is our
code shorter and easier to read and more understandable...

Hey, not so fast! Understandable - you say? Understandable??
Oh sure the code's shorter and it's nice that I don't have to get
bogged down in a lot of the details. But - you're missing something...
I don't understand why we have to put a "&" at the front of
order?!?! Why do we do that? Did I miss a memo or something?

There's a very good reason why we need to use the &
symbol when we use scanf for something other than
a string.
It's because scanf() only accepts pointers to data.

Pointers can be one of the most hardest things to learn when you first
start using C. To see what a pointer is and exactly how they work, we
need to dig a little deeper into how scanf works for numbers and arrays.

Use the "&" operator
and the "%i" format
to enter ints directly
with scanf.

50   Chapter 2

scan for numbers

int x;

scanf("%i", &x);

printf("You entered the value %i\n", x);

Using scanf For Numbers Up Close

To see how scanf() can read integers from the command line, let's look at the
following piece of code in more detail:

Create the storage.
The first thing the code needs to do is create the x variable.
What is a variable? It's really just a storage location. Let's
imagine the machine allocates memory address 4,000,000 for
the x variable. Whenever the program needs to know the value
of x, it will just look at the contents of this memory address.

1
This will be
where we store the x variable.

It's at address
4,000,000.

scanf looks at the format string.
When the scanf() function starts to run it will look at the format string
it was given and decide how it need to treat the input from the user.

2

scanf("%i", ...)

Hmm.... Looks like the
user is going to enter
the digits of an integer.

This is the format string.

%i means the input will
be treated as an int.

scanf finds out where to store the result.
But what will happen when the user enters a number? The scanf() function will
need to store the resulting int somewhere in memory. The second parameter - &x - is
the value of the address of x. The &-operator finds the memory used by a variable -
so &x has the value 4,000,000 because that is the memory address where x is stored.

3

So when I find out
the number I need to
store it at location
4,000,000.

&x == the address
where x is stored.

4,000,000

memory and pointers

you are here 4   51

You entered the value 1234
File Edit Window Help

The user types in a number at the command line.
The scanf() function will now wait until the user has entered some
characters at the command line and hit [RETURN].

4

The user types in some characters at the command line.

scanf stores the number in memory.
Once the scanf() function has the characters, it then needs to convert them
into a integer and then store them in memory:

5

1,2,3,4 1234

These are the characters that were entered by the user.
The computer converts
them to 1234. The number 1234

is stored at
memory location
4,000,000.

printf displays the result.
The printf() function then displays the result. printf is passed two values:

 * The format string "You entered the value %i\n"

 * The value of x

Remember - when the computer sees the variable x it will just look at the
contents of memory location 4,000,000.

6

Geek Bits

The address of a variable
is also known as a pointer
to the variable. That's
because it points to the
variable in memory in the
same way that your home
address points to you.
Pointers are used a lot of C
programs and they can be
very confusing when you
first start to program in C.

OK - so I have to print
this formatted string
with the value.... 1234.

But how come we didn't have to use the
&-operator when we asked scanf() to read a
string for us?

The variable x now
has the value 1234.

1234

1234
4,000,000

52   Chapter 2

scan for text

Using scanf For Text Up Close

To see how scanf() works with text, let's look at this example code:

char username[9];

scanf("%8s", username);

printf("Your username is '%s'", username);

Allocate space for a new array.
The computer will begin by allocating a section of memory for the array.
Let's say it starts to allocate space from address 3,750,000. It can't just
allocate a single memory location because it needs to leave space for 9
characters in the array, so the computer will actually memory from location
3,750,000 to 3,750,008.

1

This is where the
last character in
the array is stored.

Create a new variable called "username".
But the computer isn't done with that first line of code yet. It's
allocated space for the array, but it hasn't created the variable yet. Now
you might think the array is the variable, but it's not. The username
variable will actually be created at an entirely separate location.

But if the array variable is separate from the array itself, then what
will value of the variable be? Well - the username variable will
actually contain the address of the first element of the array

2

This is the
username variable.

The username
variable is quite
separate from the
array it points at.

The username
variable will be
stored at some
other address.

The computer will
be able to track
down the array
by looking at the
address stored in
username.

The scanf() function starts running.
The scanf() function is now called. It's passed two things:

3

scanf("%8s", username);
The format
string "%8s". This is an address.

The value of the username variable.

The format string will tell the computer that it will need to
read a string of up to 8 characters. And the username
variable will have the value 3,750,000. This is the address
where scanf() will start to store the string.

We're passing username and not &username because
the username variable already contains an address.

So I need to
read a string and
store it starting
at location
3,750,000.

3,7
50,0

00

3,7
50,0

01

3,7
50,0

02

3,7
50,0

03

3,7
50,0

04

3,7
50,0

05

3,7
50,0

06

3,7
50,0

07

3,7
50,0

08

3750000

username

This will be where the
first character in the
array is stored.

memory and pointers

you are here 4   53

printf("Your comment was '%s'", comment);

Read the characters from the command line.
The scanf() function will now wait for the user to enter the some characters at
the keyboard and hit [RETURN].

4

scanf stores the number in memory.
Now that scanf has read the characters from the command line it will store
them away in memory, beginning at location 3,750,000.

5
So I put a 'G'
at 3,750,000, an

'e' at 3,750,001...

printf displays the result.
Now the printf function is called. It's also passed two things:

6

I'll print the contents of
3,750,000 - that's a 'G'. At
3,750,001 there's an 'e'....

So even though scanf() looks different for numbers
andtext, in both cases the second parameter needs to
be a pointer - that is, it needs to be an address.

The address of the array.The format string.

Because printf knows that it is going to print a string, it doesn't treat the second
parameter as a simple number. Instead it will treat the second parameter as
starting memory address.

		� Don't worry
if pointers
seem a little
strange when
you first
meet them.

Pointers are one of the trickiest
things in C, but there's no
rush. Spend a bit of time going
through these past few pages and
make sure you're comfortable
with pointers before you continue.

Geronimo

The user types in characters at the command line.

Your username is Geronimo
File Edit Window Help

G e r o n i m o \0

3,7
50,0

00

3,7
50,0

01

3,7
50,0

02

3,7
50,0

03

3,7
50,0

04

3,7
50,0

05

3,7
50,0

06

3,7
50,0

07

3,7
50,0

08

54   Chapter 2

scan for text beyond whitespace

Using scanf For Text Way Up Close
When you're reading text with the scanf() function,
there's one thing you need to be careful about: by
default it stops at whitespace.

Let's say someone changed the previous example code
to allow for longer strings to be entered:

scanf("%50s", username);

This will allow for a longer string. Great - now the user can
enter their full name.

The code will work great... right up until someone enters a
string that contains a space.

Geronimo Schwartz

The user types in characters at
the command line, including a space.

If that happens the scanf() function will do something that's
kinda annoying:

So that's a G, e, r, o,
n, i, m, o... and... Oh - a
space. The piece of text
must have ended.

That's right - even though we told the computer to accept up to
50 characters, it will stop as soon as it hits some whitespace.

Now the good news is that scanf doesn't throw away the rest
of the text that it read from the keyboard. It buffers it. That
means if you call the scanf() function a second time, it won't
need to ask the user for more text, it will simply carry on
reading where it left off.

scanf("%50s", username);

scanf("%50s", username2);

This will read the text "Geronimo".

If we call it a second time, username2 will be set to "Schwartz".

memory and pointers

you are here 4   55

You can even shorten the code to enter several strings at once by
using a pattern like this:

scanf("%50s %50s", first_name, last_name);

printf("First name: %s\nLast name: %s\n", first_name, last_name);

Both scanf() and printf()
allow you to pass as many
variables as you like to them.

> John Smith
First name: John
Last name: Smith

File Edit Window Help

OK - but what if you really really just want to enter a
whole chunk of text, spaces and all?

Well you could use scanf, using a regular expression. You
can use a piece of code like this:

scanf("%79[^\n]", line); This means "Read everything that's not a NEWLINE"

This code will read all of the characters from the keyboard
buffer until it reaches a NEWLINE character. It works because
%79[\^n] literally means read up to 79 characters, so long
as they're not NEWLINES.

But if this seems kinda complicated - you're right.

The scanf() function was designed for structured text. That's the
kind of text that's used for computer languages or data files. The
kind of text where you know exactly what kind of strings you are
going to find. But it's not so good for unstructured text. That's why
the fgets() function was invented. fgets() asks the user for
a complete line of text and it reads all of it. That's exactly the sort
of thing you need for free-format text:

The user can now enter
two strings at once...

...and scanf stores
them separately.

char line[80];

fgets(line, 80, stdin);

printf("Your quote was: %s", line);

For free
text input
use fgets()

We'll create an array
for our text.

The first value in
fgets is the name
of the array.

The second value in fgets is the size of the array - if
our array is 80 chars, then this needs to be exactly 80.

stdin just means "Read it from the
keyboard" rather than a file.

56   Chapter 2

array and pointer

Tonight’s talk: Array and Pointer talk through their
differences

Array:

Ah - pointer! Come in! Sit ye down. Sit ye down.

All the better for seeing you, old friend. Tell me,
how are things?

Really? How frightful.

What?

Well yes. I suppose I am the real reason that you
exist.

Nothing, nothing. I don't mean to offend. It's just
that pointers really only exist to provide access to
arrays don't they.

Really?

Pointer:

Array, my dear and venerable colleague. How are
you?

Well you know. Mustn't grumble. Oh - one thing. I
was in a program the other day and I was mistaken
for you.

I know. Many coders confuse us I think because...
well. How can I put this delicately? You... you don't
really have a name.

A name. I mean if anyone ever needs to get in touch
with you, they need go through me.

I'm sorry my dear and very old friend, I'm afraid I
don't quite follow.

Well - no. That's not true. Actually I have several
other friends.

Yes. Yes - I often provide access to other data types.
I am frequently called upon for functions such as
scanf that need to update data that is passed to
them.

memory and pointers

you are here 4   57

Array:

True, true. I was forgetting. But you are... how can I
put it... just an intermediary aren't you?

Well I am the data that people are interested in.

Please - I didn't mean to offend.

I'm so sorry. I can't quite catch your drift. As
so many people have said - you are awfully
confusing.

Yeah - you and whose array? You're just a memory
address! You don't have any proper content!

You might talk big but you're only a word long.

You cheeky mare! Just wait till I...

Pointer:

"Intermediary" you say, my very eminent and ancient
compatriot. How so?

And who, pray, am I? The cat's mother?

Whenever anyone creates an array in memory they
need me to get access to it. Without me, you'd be
useless. Cocker.

You're looking for a punch up the bracket.

Well... I know where you live, mate.

Fatso!

At this point we draw a close to today's discussion
between such eminent figures.

58   Chapter 2

no dumb questions

Q: So a pointer variable contains a
number?

A: Yes - it contains the address of a
memory location.

Q: So if I look at it's value I'll just see
an int or something?

A: Well not exactly. C gives a pointer
variable a particular type, like "pointer to
char". That means if you try to read the
numeric address directly the compiler will
give you a warning. You code shouldn't care
what the actual address is, so long as your
pointer is pointing at the right data.

Q: If "quote" is a variable pointing
to the start of an array, I can see that
the computer can use it to find quote[0]

- the first element. But how does it find
quote[1], and quote[2] and so on?

A: The computer knows what type of
data a pointer points to, so it knows how
many bytes of memory something like a
char occupies. To read the value of quote[1]
it will just read the contents of (quote + 1).

Q: So the computer records the start
of an array in a variable. Where does it
record the length?

A: It doesn't.

Q: So how do I know when I get to
the end of the array?

A: You either have to keep your own
record of the length somewhere, or you
need to mark the last item in the array with
some special value - just like strings end
with a special '/0' value.

Q: Can I print out the actual address
of a variable?

A: Yes. If you have an int called 'x', then
use printf("%p", &x);

Q: What does the "%p" format string
mean?

A: It means that the value you are
printing is a pointer-type.

Q: If pointers are just addresses,
does that mean they are ints or
something?

A: No. A pointer is a distinct type. In
fact there's a different pointer for different
data types. So there are char-pointers that
contain the addresses of chars and int-
pointers that point at ints and so on.

�� scanf() lets you enter strings with the
"%s" format.

�� scanf() lets you enter int-values with the
"%i" format.

�� The &-operator returns the address of a
variable, like &order.

�� char q[20] does two things - it creates an array
and it creates a pointer variable containing the
address of the array.

�� The address of a piece of data is called a
pointer to the data.

�� A variable that contains a pointer is called a
pointer variable.

�� The name of an array is actually just a pointer
variable to the first item in the array.

�� If you are reading an int called x, you need to
use scanf("%i", &x).

�� If you are reading an string called q, you need
to use scanf("%s", q).

�� Both &x and q are addresses.

memory and pointers

you are here 4   59

THE
MATINGGAME We have a classic trio of bachelors ready to play The Mating

Game today.

Tonight's lucky lady is going to pick one of these fine contestants.
Who will she choose?

#include <stdio.h>

int main()

{

 int contestants[] = {1, 2, 3};

 int choice = contestants[0];

 contestants[0] = 2;

 contestants[1] = contestants[2];

 contestants[2] = choice;

 choice = contestants[1];

 printf("I'm going to pick contestant number %i\n", choice);

 return 0;

}

Contestant 1

Contestant 2
Contestant 3 I'm going to pick

contestant number

Look at the code below,
and write your answer here.

60   Chapter 2

contestants chosen

SOLUTION

THE
MATINGGAME We have a classic trio of bachelors ready to play The Mating

Game today.

Tonight's lucky lady is going to pick one of these fine contestants.
Who will she choose?

#include <stdio.h>

int main()

{

 int contestants[] = {1, 2, 3};

 int choice = contestants[0];

 contestants[0] = 2;

 contestants[1] = contestants[2];

 contestants[2] = choice;

 choice = contestants[1];

 printf("I'm going to pick contestant number %i\n", choice);

 return 0;

}

Contestant 1

Contestant 2
Contestant 3 I'm going to pick

contestant number
3

memory and pointers

you are here 4   61

Desperately seeking Susan
There are so many tracks on the retro jukebox that people can't find
the music they are looking for. To help the customers, the guys in the
Head First Lounge want you to write another program.

This is the track list:

Frank

Gah! Wayne Newton...
again! We need a search
program to help people find
tracks on the jukebox.

The list is likely to get longer, so there's just the first few tracks
for now. What you'll need to do is write a C program that will ask
the user which track they are looking for, and then get it to search
through all of the tracks and display any that match.

There'll be lots of strings in this program. How do you think you can
record that information in C?

Track list:

I left my heart in Harvard Med School

Newark, Newark - a wonderful town

Dancing with a Dork

From here to maternity

The girl from Iwo Jima

The guys say that there will be lots more tracks in the future, but they'll never be more than 80 characters long.

Tracks from the new album "Little Known Sinatra".

62   Chapter 2

array of arrays

tracks[4][6]

You need to create an array of arrays
There are several track names that you need to record. You can record
several things at once in an array. But remember - each string is itself an
array. That means you need to create an array of arrays - like this:

char tracks[][81] = {

 "I left my heart in Harvard Med School",

 "Newark, Newark - a wonderful town",

 "Dancing with a Dork",

 "From here to maternity",

 "The girl from Iwo Jima",

};

That means that we will be able to find an individual track
name like this:

tracks[4] "The girl from Iwo Jima"

But we can also read the individual characters of each of the
strings if we want to:

'r'

So now we know how to record the data in C, what do we need
to do with it?

This is the 7th character in the 5th string.

This has this value. This is the 5th string. Remember - arrays begin at zero.

This first set of brackets is for the array of all strings.

The compiler can tell
that we have 5 strings,
so we don't need a
number between these
brackets.

The second set of brackets is
used for each individual string. We know that track names

will never get longer than
80 characters, so we'll set
this to 81.

Each string is an
array, so this is an
array of arrays.

The array of arrays looks something like this in memory:

Characters within a string.

Tracks.
tracks[4]

tracks[4][6]

-

i

D

t

w

o

e

o

n

a

r

r

k

n

J

H

w

a

o

\0

i

i

\0

t

m

r

n

v

d

\0

y

a

\0

\0

\0

m y

N

r

l

w

e

e

h

w

i

f

t

t

r

e

a

a

r

h

o

o m

r

k

t

a

m a

I

I

N e

D

F

T

a

r

h

l

w

e

a

n

o

e

c

m

f

r

t

k

i

g

n

h

i

,

g

e

r

...

...

...

...

...

memory and pointers

you are here 4   63

...then find strings containing the search text
The Guys have helpfully given you a spec:

Ask the user for the text they're

looking for

Loop through all of the track names

 If a track name contains the

	 search text then:

 Display the track name

Hmmm... how do we find out if a track name contains some text?

Well, we know how to record the tracks. We also know how to
read the value of an individual track name - so it shouldn't be
too difficult to loop through each of them. We even know how
to ask the user for a piece of text to search for.

But how we look to see if the track name contains a given piece
of text?

That could be pretty gnarly code to write. Fortunately we won't
have to - we'll use the library.

64   Chapter 2

library code

Using string.h
The C standard library is a bunch of useful code that you get for free
when you install a C compiler. The library code does useful stuff like
opening files, or doing math, or managing memory. Now chances are you
won't want to use the whole of the standard library at once, so the library
is broken up into several sections, and each one has a header file. The
header file lists all of the functions that live in a particular section of the
library.

So far we have only really used the stdio.h header file. stdio.h lets
you use the standard input/output functions like printf and scanf.

But the standard library also contains code to process strings. String
processing is required by a lot of the programs and by using the string
code in the standard library is tested, stable and fast.

Compare two strings to each other
Search for a string

Make a copy of a string Slice a string into little pieces

There are plenty of other
exciting things in string.h
for you to play with, this is
just for starters.

You can include the string code into your program using the string.h
header file. You can add it at the top of your program, just like we include
stdio.h.

#include <stdio.h>

#include <string.h>

We'll use both stdio.h and
string.h in our jukebox program.

But what do the string functions look like, and which
do we need to use?

string.h

memory and pointers

you are here 4   65

Concatenate two strings together strchr

See if you can match up each string.h function with the description of
what it does.

Which of the functions above should you use for the jukebox
program? Write your answer below.

strcmp

strstr

strcpy

strlen

strcat

Find the location of a string inside
another string

Find the location of a character inside
a string

Find the length of a string

Compare two strings together

Copy one string to another

66   Chapter 2

what's my purpose

Concatenate two strings together strchr

Which of the functions above should you use for the jukebox
program? Write your answer below.

See if you can match up each string.h function with the description of
what it does.

SOlUTion

strstr

strcmp

strstr

strcpy

strlen

strcat

Find the location of a string inside
another string

Find the location of a character inside
a string

Find the length of a string

Compare two strings together

Copy one string to another

memory and pointers

you are here 4   67

Using the strstr function
So how exactly does the strstr() function work? Let's look at an
example. Let's say we are looking for the string "fun" inside a larger
string "dysfunctional". We'd call it like this:

strstr("dysfunctional", "fun")

strstr() will find the
string "fun" starting
here at location
4,000,003.

The strstr() function will search for the second string in the
first string. If it finds the string then it will return the address of the
located string in memory. In the example here, the function might
find that the "fun" substring begins at memory location 4,000,003.

But what if the strstr() can't find the substring? What then?
In that case, strstr() returns the value 0. Can you think why
that is? Well - if you remember, C treats zero as false. That means
you can use strstr to check for the existence of one string inside
another, like this:

char s0[] = "dysfunctional";

char s1[] = "fun";

if (strstr(s0, s1))

 puts("I found the fun in dysfunctional!");

Let's see how we can use strstr() in the jukebox program.

yd s uf n ic o lant

4,0
00,0

00

4,0
00,0

01

4,0
00,0

02

4,0
00,0

03

4,0
00,0

04

4,0
00,0

05

4,0
00,0

07

4,0
00,0

10

4,0
00,0

12

4,0
00,0

14

4,0
00,0

15

4,0
00,0

16

4,0
00,0

17

uf n

68   Chapter 2

out of the pool

Pool Puzzle
The guys in the lounge had already started to write

the code to search through the track list, but -
oh no! - some of the paper they were writing
the code on has fallen into the pool. Do you
think you can select the correct pieces of
code to complete the search function? It's
been a while since the pool was cleaned - so

be warned: some of the code in the pool might
not be needed for this program.

Note: The guys have slipped in a couple new
pieces of code they found in a book somewhere.

Note: each thing from
the pool can only be
used once!

void find_track(char search_for[])

{

 int i;

 for (i = 0; i < 5; i++) {

 if ((,))

 printf("Track %i: '%s'\n", ,);

 }

}

Hey look - we're creating a separate
function. Presumably when we get round to
writing the main() function it will call this. "void" just means this function won't return a value.

This is the "for loop".
We'll look at this in more
detail in a while, but for
now you just need to know
that it will run this piece
of code 5 times. We're going to

be printing out
two values here.

One value will
need to be
an integer.

The other will
be a string.

This is where we're checking to see if the
search term is contained in the track name.

If the track name matches our
search, we'll display it here.

strstr

tracks[i]

search_for tracks[i]

i

"Sinatra"

way
my

memory and pointers

you are here 4   69

BE the Compiler
The jukebox program needs a main()
function that reads input from the user
and calls the find_track() function on the

opposite page. Your job is to
play like you're the compiler
and say which of the
following main() functions
is the one you need for the

jukebox program.

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%79s", search_for);

 find_track();

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%79s", search_for);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%80s", search_for);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%79s", search_for);

 find_track(search_for);

}

70   Chapter 2

out of the pool

Pool Puzzle Solution
The guys in the lounge had already started to write

the code to search through the track list, but -
oh no! - some of the paper they were writing
the code on has fallen into the pool. Do you
think you can select the correct pieces of
code to complete the search function? It's
been a while since the pool was cleaned - so

be warned: some of the code in the pool might
not be needed for this program.

Note: The guys have slipped in a couple new
pieces of code they found in a book somewhere.

void find_track(char search_for[])

{

 int i;

 for (i = 0; i < 5; i++) {

 if ((,))

 printf("Track %i: '%s'\n", ,);

 }

}

strstr

tracks[i]

search_fortracks[i]

i

"Sinatra"

way
my

memory and pointers

you are here 4   71

BE the Compiler Solution
The jukebox program needs a main()
function that reads input from the user
and calls the find_track() function on the

opposite page. Your job is to
play like you're the compiler
and say which of the
following main() functions
is the one you need for the

jukebox program.

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%79s", search_for);

 find_track();

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%79s", search_for);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%80s", search_for);

 find_track(search_for);

 return 0;

}

int main()

{

 char search_for[80];

 printf("Search for: ");

 scanf("%79s", search_for);

 find_track(search_for);

}

find_track() is being
called without passing
the search term.

This is the correct
main() function

This version would
allow the user to
enter an 81 character
string - that's one
too many for the 80
character search_for
array.

Oops! This one doesn't have a return
value. That will cause the compiler to
generate a warning.

72   Chapter 2

code review

It's time for a code review
Let's bring the code together and review what we've got so far:

It's important that we assemble the code in this order. The headers are
included at the top, so that the compiler will have all the correct functions
before it compiles our code. Then we'll define the tracks before we write
the functions. This is called putting the tracks array in global scope.
A global variable is one that lives outside any particular function. Global
variables like tracks are available to all of the functions in the program.

Finally, we have the functions: find_track first, followed by main(). The
find_track() function needs to come first, before we call it from main().

OK - let's see if the program works.

#include <stdio.h>
#include <string.h>

char tracks[][80] = {
 "I left my heart in Harvard Med School",
 "Newark, Newark - a wonderful town",
 "Dancing with a Dork",
 "From here to maternity",
 "The girl from Iwo Jima",
};

void find_track(char search_for[])
{
 int i;
 for (i = 0; i < 5; i++) {
 if (strstr(tracks[i], search_for))
 printf("Track %i: '%s'\n", i, tracks[i]);
 }
}

int main()
{
 char search_for[80];
 printf("Search for: ");
 scanf("%79s", search_for);
 find_track(search_for);
 return 0;
}

We still need to stdio.h for the
printf() and scanf() functions.

We will also need the string.h
header so we can search with
the strstr() function

We'll set the tracks array outside of the main() and find_track() functions - that way, the tracks will be usable everywhere in the program.

This is our new find_track()
function - we'll need to declare it
here before we call it from main().

This code will display all
the matching tracks.

i++ means "increase
the value of i by 1".

And this is our main() function - which
is the starting point of the program.

We're asking for the
search text here.

Now we call our new
find_track() function and
display the matching tracks.

memory and pointers

you are here 4   73

It's time to fire up the terminal and see if the code works.

Test Drive

> gcc text_search.c -o text_search && ./text_search
Search for: town
Track 1: 'Newark, Newark - a wonderful town'
>

File Edit Window Help MyWeigh

And the great news is - the program works!
Even though this program is a little longer than any code we've
written so far, it's actually doing a lot more. It creates an array of
strings and then uses the string library to search through all of
them to find the music track that the user was looking for.

Hey, hey, hey! That code is a
rockin' success. The cats in the
bar are groovin' on down to a
whole heap of Sinatra goodness! Geek Bits

For more information about
the functions available in
string.h see
http://linux.die.net/man/3/string

If you are using a Mac or a Linux
machine, you can find out more
about each of the string.h
functions like strstr by
typing:

man strstr

74   Chapter 2

for loop

But what was that "for" all about?
There was one piece of code that we used in the code before really
looking at how it worked - the for loop.

Now if you've used another C-like language, like JavaScript or Java or C#,
then the for-loop is probably already familiar to you. But if not here's how
to use it in a little more detail.

The for-loop is used to run a piece of code several times - just like the
while-loop does. In fact, there's no real need to ever use a for-loop.
Theoretically, you could just stick to while loops. So why do for-loops
exist? What are they for?

A lot of programs contain loops that follow a particular pattern,
something like this:

int counter = 1;

while (counter < 11) {

 printf("%1 green bottles, hanging on a wall\n");

 counter++;

}

Loops like this have code that prepares variables ready for the loop, some
sort of condition that is checked each time the loop runs and finally some
sort of code at the end of the loop that updates a counter or something
similar.

Because this pattern is so common, the designers of C created the for-
loop to make it a little more concise. Here is that same piece of code
written with a for-loop:

int counter;

for (counter = 1; counter < 11; counter++) {

 printf("%1 green bottles, hanging on a wall\n");

}

for-loops are actually used a lot in C - as much, if not more than while
loops. Not only do they make the code slightly shorter, but they're easier
for other C programmers to read because all of the code that controls the
loop - the stuff that controls the value of the counter variable - is now
contained in the for-statement and is taken out of the loop-body.

Remember - counter++ means "increase the counter variable by one"..

This is the loop startup code.
This is the loop condition.

This is the loop update
code that runs at the
end of the loop body
to update a counter.

This initializes the loop variable.
This is the text condition checked before the loop
runs each time.

This is the code that
will run after each loop.

Because there's only one line in the loop-body,
we could actually have skipped these braces.

Every "for" loop
needs a body.

memory and pointers

you are here 4   75

Q: Why is the list of tracks defined as
tracks[][80]? Why not tracks[5][80]?

A: You could have defined it that way,
but the compiler can tell there are 5 items
in the list, so you can skip the [5] and just
put [].

Q: But in that case why couldn't we
just say tracks[][]?

A: The track names are all different
lengths, so you will need to tell the compiler
how long to make each item in the array.

Q: Does that mean each string in the
tracks array is 80 characters then?

A: The program will allocate 80
characters for each string, even though
each of them is much smaller.

Q: So the tracks array takes 80 time
5 characters = 400 characters worth of
space in memory?

A: Yes.

Q: What happens if I forget to include
a header file like string.h?

A: For some header files, the compiler
will give you a warning and then include
them anyway. For other header files the
compiler will simply give a compiler error.

Q: Why did we put the tracks array
definition outside of the functions?

A: We put it into global scope. Global
variables can be used by all functions in the
program.

Q: Now that we've created two
functions, how does the computer know
which one to run first?

A: The program will always run the
main() function first.

Q: Why do I have to put the find_
track() function before main()?

A: C needs to know what parameters a
function takes and what it's return type is
before it can be called.

Q: What would happen if I put the
functions in a different order?

A: In this case you'd just get a few
warnings.

�� You can create an array of arrays with char
strings[..][..].

�� The first set of brackets are used to access the
outer-array.

�� The second set of brackets are used to access
the details of each of the inner arrays.

�� The string.h header file gives you access to
a set of string manipulation functions in the C
Standard Library.

�� You can create several functions in a C
program, but the computer will always run
main() first.

�� The for-loop is a more compact way of writing
certain kinds of loops.

76   Chapter 2

code shuffle

#include <stdio.h>

int main()

{

 char* cards = "JQK";

 char a_card = cards[2];

 cards[2] = cards[1];

 cards[1] = cards[0];

 cards[0] = cards[2];

 cards[2] = cards[1];

 cards[1] = a_card;

 puts(cards);

 return 0;

}

Anyone for three-card monte?
In the back-room of the Head First Lounge there's a game of three-
card monte going on. Someone shuffles three cards around and you
have to watch carefully and decide where you think the Queen card
went. Of course, being the Head First Lounge, they're not using real
cards - they're using code. Here's the program they're using:

The code is designed to shuffle the letters in the 3-letter string
"JQK". Remember - in C, a string is just an array of characters.
The program switches the characters around and then displays
what the string looks like.

The players place their bets on where they think the 'Q' letter
will be, then the code is compiled and run.

Find the Queen.

memory and pointers

you are here 4   77

char* cards = "JQK";

The * means that the cards variable is designed to store a pointer to a
character in memory. Remember - a pointer is just another word for an
address. By saying that cards is a char* we are telling the compiler that
we are only ever going to store addresses in it.

Every time we've created strings before we've always declared the string
with array notation like this:

char cards[] = "JQK";

So what's the difference? Well, remember when you declare an array
like this, you are actually doing two things:

If we use the *-notation, we actually skip the first step. By
declaring cards as a variable of type char*, we are
just creating a new pointer variable called cards and
pointing it to the start of the "JQK" string.

But - wait a minute. How come we don't have to create the
string array? Well the truth is that whenever a C program
runs it automatically loads any literal strings the program
uses into memory. So by the time the main() function gets
called in our program, the string "JQK" somewhere in memory.

Literal strings are
automatically created
in memory when the
program starts.

Now that you know what the pointer-notation
means in the code - it's time for you to try and work
out what the code actually does. Where do you
think the 'Q' is?

�Creating a new array of characters.1

�Creating a variable called cards that contains the
address of the first character of the array.

2

This is a literal string.

Literal strings are allocated memory
as soon as the program is loaded.

This is a pointer variable.

This string lives somewhere in memory...

But what's with the *?
Take a closer look at the code. There's something we haven't used before:

char* cards = "JQK";

"JQK"
cards

78   Chapter 2

memory error

Oops... there's a memory problem...
It seems there's a problem with the card shark's code. When
the code is compiled and run on the Lounge's notebook
computer, this happens:

Darnit. I knew that
card shark couldn't be
trusted...

What's more, if the guys try the same code on different
machines and operating systems, they get a whole bunch of
different errors:

What's wrong with the code?

> gcc -Wall monte.c -o monte && ./monte
monte.exe has stopped working

File Edit Window Help HolyCrap

SegPhault!

Bus Error!
Segmentation Error!

Whack!

Kapow!

> gcc -Wall monte.c -o monte && ./monte
bus error

File Edit Window Help PlaceBet

memory and pointers

you are here 4   79

?What's Your Hunch?

It's time to use your intuition. Don't over-analyze. Just take a guess.
Read through these possible answers and select only the one you think is
correct.

What do you think the problem is?

The string can't be updated

We're swapping characters outside the string

The string isn't in memory

Something else

Whack!

80   Chapter 2

gut check

?What's Your Hunch?

It's time to use your intuition. Don't over-analyze. Just take a guess.
Read through these possible answers and select only the one you think is
correct.

What do you think the problem is?

The string can't be updated

We're swapping characters outside the string

The string isn't in memory

Something else

Literal strings can never be updated
A variable that points to a literal string, can't be used to change
the contents of the string:

char* cards = "JQK"; This variable can't modify this string.

But if you create an array from a literal string, then you can
modify it:

char cards[] = "JQK";

It all comes down to how C uses memory...

Solution

memory and pointers

you are here 4   81

In memory: char* cards="JQK";

The computer loads the literal string.
When the computer loads the program into
memory, it puts all of the constant values -
like the string literal "JQK" into the constant
memory block. This section of memory if
read only.

1

char* cards="JQK";
...
cards[2] = cards[1];

The program creates the cards
variable on the stack.
The stack is the section of memory that the
computer uses for local variables - variables
insides functions. The cards variable will live
here.

2 cards

1

2

The cards variable is set to the
address of "JQK".
The cards variable will contain the address of
the literal string "JQK". Remember - this
is a string that lives in read-only memory.

3

3

The computer tries to change the
string.
When the program tries to changes the
contents of the string pointed to by the cards
variable - it can't; the string is read-only.

4

So the problem is that literal strings like
"JQK" are held in read only memory. They're
constants.

But if that's the problem, how do
we fix it?

4

I can't update
that, buddy - it's in
the constant memory
block so it's read-only.

Stack

Heap

Globals

Constants

Code

Lowest address.

Highest address.

Re
ad

-o
nly

 m
em

ory
.

\0J Q K

To see why this line of code causes a memory error, we need to
dig into the memory of the computer and see exactly what the
computer will do.

82   Chapter 2

copy the string

If you're going to change a string,
make a copy
The truth is that if we want to change the contents of a string, we
need to make sure that we make our own copy of it. If we create a
copy of the string in an area of the memory that's not read-only, we
won't have a problem.

And how do we make a copy? Well - we just create the string as
we've always done before: as a new array.

char s[] = "JQK";

Remember - when we create an array like this, we are actually
doing two things:

�We're creating a new array in memory and setting the
values to 'J', 'Q', 'K' and the termination character '/0',
and

1

�We're creating a new pointer variable called cards with the
address of the array.

2

To see how this code fixes the problem, let's take a look at what it
does to memory.

\0J KQ

\0J KQ

This string is in read-only memory...

...so we make a copy of the string in a
section of memory that can be amended.

memory and pointers

you are here 4   83

In memory: char cards[]="JQK";

The computer loads the literal string.
As before, when the computer loads the
program into memory, it stores the constant
values like the string "JQK" into read only
memory.

1

char cards[]="JQK";
...
cards[2] = cards[1];

The program creates a new array on
the stack.
We're declaring an array, so the program will
create one large enough to store the "JQK"
string - 4 characters worth.

2
cards

1

2

The program initializes the array.
But as well as allocating the space, the
program will also copy the contents of the
literal string "JQK" into the stack memory. .

3

3

The cards variable points at the new
array.
But now, rather than pointing at the original
literal string, it points at the copy in the array
that is sitting in the stack.

5

So the difference this time, is that the cards
pointer variable is now pointing at a string in
memory that it can change. That should
mean that if anything tries to change the
cards string, there shouldn't be a problem.

Let's try it and see.

4

Stack

Heap

Globals

Constants

Code

The program creates the cards
variable on the stack.
Just the same as before.

4

5

Lowest address.

Highest address.

Re
ad

-o
nly

 m
em

ory
.

We've already seen what happens with the broken code,
but what about our new code? Let's take a look:

\0J Q K

\0J Q K

84   Chapter 2

test drive

Test Drive
So if we construct a new array in the code - let's see what happens:

#include <stdio.h>

int main()
{
 char cards[] = "JQK";
 char a_card = cards[2];
 cards[2] = cards[1];
 cards[1] = cards[0];
 cards[0] = cards[2];
 cards[2] = cards[1];
 cards[1] = a_card;
 puts(cards);
 return 0;
}

> gcc monte.c -o monte && ./monte
QKJ

File Edit Window Help Where'sTheLady?

The code works! Our cards variable now points to a string in an
unprotected section of memory, so we are free to modify it's contents.

Geek Bits

One way to avoid this problem in the future is to never write code that sets a simple char pointer to a literal
string value like:

			 char * s = "Some string";

There's nothing wrong with setting a pointer to a string literal - the problems only happen when you try to
modify a literal string. Instead, if you want to set a pointer to a literal, always make sure you use the const
keyword:

			 const char * s = "some string";

That way, if the compiler sees some code that uses tries to modify the string, it will give you a compile error:

			 s[0] = 'S';

			 monte.c:7: error: assignment of read-only location

Yes! The Queen
was the first
card. I knew it...

memory and pointers

you are here 4   85

Q: Why didn't the compiler just tell me I couldn't change
the string?

A: Because we'd declare the cards as a simple "char *",
the compiler didn't know that the variable would always be
pointing at a literal string.

Q: Why are string literals stored in read only memory?

A: Because they are designed to be constant. If you write a
function to print "Hello World", you don't want some other part of
the program modifying the "Hello World" literal string.

Q: Do all operating systems enforce the read-only rule?

A: The vast majority do. Some versions of GCC on Cygwin
actually allow you to modify a literal string without complaining.
But it is always wrong to do that.

Q: What does const actually mean? Does it make the
string read-only?

A: Literal strings are read-only anyway. The const modifier
means that you the compiler will complain if you try to modify an
array with that particular variable.

Q: Do the different memory segments always appear in
the same order in memory?

A: They will always appear in the same order for a given
operating system. But different operating systems can vary the
order slighty. For example, Windows doesn't place the code in
the lowest memory addresses.

�� If you see a "*" in a variable declaration, it
means the variable will be a pointer.

�� String literals are stored in read-only memory.

�� If you want to modify a string, you need to
make a copy in a new array.

�� You can make declare a char-pointer as
const char * to prevent the code using it
to modify a string.

86   Chapter 2

five-minute mystery

The Case of the Magic Bullet
He was scanning his back catalog of Guns 'n' Ammo into Delicious Library when there
was a knock at the door and she walked in. 5' 6", blonde with a good laptop bag and
cheap shoes. He could tell she was a code jockey. "You've gotta help me.. you gotta clear
his name! Jimmy was innocent I tells you. Innocent!" He passed her a tissue to wipe the
tears from her baby blues and led her to a seat.

It was the old story. She'd met a guy, who knew a guy. Jimmy Blomstein worked tables at
the local Starbuzz and spent his weekends cycling and working on his taxidermy collection.
He hoped one day to save up enough for an elephant. But he'd fallen in with the wrong
crowd. The Masked Robber had met Jimmy in the morning for coffee and they'd both
been alive:

char masked_raider[] = "Alive";

char * jimmy = masked_raider;

printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

Then, that afternoon, the Masked Raider had gone off to pull a heist. Like a hundred
heists he'd pulled before. But this time, he'd not reckoned on the crowd of G-Men

enjoying their weekly 3-card Monte session in the backroom of the Head First Lounge.
You get the picture. A rattle of gunfire, a scream and moments later the villain was laying
on the sidewalk, creating a public health hazard:

masked_raider[0] = 'D';

masked_raider[1] = 'E';

masked_raider[2] = 'A';

masked_raider[3] = 'D';

masked_raider[4] = '!';

Problem is, when Toots here goes in to check in with her boyfriend at the coffee shop, she's
told he's served his last Orange Frappe Mochaccino:

printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

So what gives? How come a single magic bullet killed Jimmy and the
Masked Raider? What do you think happened?

Masked raider is Alive, Jimmy is Alive
File Edit Window Help

Masked raider is DEAD!, Jimmy is DEAD!
File Edit Window Help

Five Minute
Mystery

memory and pointers

you are here 4   87

void print_reverse(char* s)

{

 size_t len = strlen(s);

 char* t = + - 1;

 while (>=) {

 printf("%c", *t);

 t = ;

 }

 puts("");

}

s t

Code Magnets
The guys are working on a new piece of code for a game. They've created a function
that will display a string backwards on the screen. Unfortunately some of the fridge
magnets have moved out of place. Do you think you can help them to re-assemble
the code?

len

s t
- 1

This works out the length of a
string - so strlen("ABC") == 3.

size_t is just an integer used for storing the sizes of things.

88   Chapter 2

code magnets

void print_reverse(char* s)

{

 size_t len = strlen(s);

 char* t = + - 1;

 while (>=) {

 printf("%c", *t);

 t = ;

 }

 puts("");

}

s

t

Code Magnets Solution
The guys are working on a new piece of code for a game. They've created a function
that will display a string backwards on the screen. Unfortunately some of the fridge
magnets have moved out of place. Do you think you can help them to re-assemble
the code?

len

s

t - 1 Calculating addresses like this is
called pointer arithmetic.

memory and pointers

you are here 4   89

C-Cross
Now that the guys have
the print_reverse
function working, they've
used it to create a
crossword. The answers
are displayed by the
output lines in the code:

int main()

{

 char* juices[] = {

 "dragonfruit", "waterberry", "sharonfruit", "uglifruit",

 "rumberry", "kiwifruit", "mulberry", "strawberry",

 "blueberry", "blackberry", "starfruit"

 };

 char* a;

 puts(juices[6]);

 print_reverse(juices[7]);

 a = juices[2];

 juices[2] = juices[8];

 juices[8] = a;

 puts(juices[8]);

 print_reverse(juices[(18 + 7) / 5]);

 puts(juices[2]);

 print_reverse(juices[9]);

 juices[1] = juices[3];

 puts(juices[10]);

 print_reverse(juices[1]);

 return 0;

}

Across

Down
1
2

3
4

5
6

7
8

90   Chapter 2

c crossword

C-Cross
Solution
Now that the guys have
the print_reverse
function working, they've
used it to create a
crossword. The answers
are displayed by the
output lines in the code:

int main()

{

 char* juices[] = {

 "dragonfruit", "waterberry", "sharonfruit", "uglifruit",

 "rumberry", "kiwifruit", "mulberry", "strawberry",

 "blueberry", "blackberry", "starfruit"

 };

 char* a;

 puts(juices[6]);

 print_reverse(juices[7]);

 a = juices[2];

 juices[2] = juices[8];

 juices[8] = a;

 puts(juices[8]);

 print_reverse(juices[(18 + 7) / 5]);

 puts(juices[2]);

 print_reverse(juices[9]);

 juices[1] = juices[3];

 puts(juices[10]);

 print_reverse(juices[1]);

 return 0;

}

Across

Down
1
2

3
4

5
6

7
8

memory and pointers

you are here 4   91

The Case of the Magic Bullet

How come a single magic bullet killed Jimmy and the Masked Raider?

Jimmy, the mild-mannered barista was mysteriously gunned-down at the same time as arch-fiend The
Masked Raider:

int main()

{

 char masked_raider[] = "Alive";

 char * jimmy = masked_raider;

 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

 masked_raider[0] = 'D';

 masked_raider[1] = 'E';

 masked_raider[2] = 'A';

 masked_raider[3] = 'D';

 masked_raider[4] = '!';

 printf("Masked raider is %s, Jimmy is %s\n", masked_raider, jimmy);

}

It took the detective a while to get to the bottom of the mystery. While he was
waiting he took a long refreshing drink from a Head First Brain Booster Fruit
Beverage. He sat back in his seat and looked across the desk at her blue, blue eyes. She
was like a rabbit caught in the headlights of an on-coming truck, and he knew that he was at
the wheel.

"I'm afraid I got some bad news for you. Jimmy and The Masked Raider... were one and the same man!"

"No!"

She took a sharp intake of breathe and raised her hand to her mouth. "Sorry sister. I have to say it how I
see it. Just look at the memory usage". He drew a diagram:

"jimmy and masked_raider are just aliases for the same memory address. They're both pointing to
the same place. When the masked_raider stopped the bullet, so did Jimmy. Add to that this invoice from
the San Francisco elephant sanctuary and this order for 15 tons of packing material - and it's an open
and shut case."

Note from marketing. Ditch the product placement for the Brain Booster Drink - the deal fell through.
Five Minute

Mystery
Solved

jimmy
vilA \0e

masked_raider

92   Chapter 2

memory levels

Memory memorizer

Stack.
This is the section of memory used for local
variable storage. Every time you call a
function, all of the function's local variables
get created on the stack. It's called the stack
because it's like a stack of plates - variables
get added to the stack when you enter a
function, and get taken off the stack when
you leave. Weird thing is, the stack actually
works upside down. It starts at the top of
memory - and grows downwards.

Heap.
This is a section of memory we haven't really
used yet. The heap is for dynamic memory

- pieces of data that get created when the
progeam is running and then hang around a
long time. We'll see later in the book how we'll
use the Heap.

Globals.
Remember when we put the list of songs from
jukebox outside of any function? That's what
a global variable is - it's a variable that lives
outside of all of the functions and is visible
to all of them. Globals get created when the
program first runs and you can update them
freely. But that's unlike...

Constants.
Constants are also created when the program
first runs, but they are stored in read-only
memory. Constants are things like literal
strings that you will need when the program
is running, but you'll never want them to
change.

Code.
Finally the code segment. A lot of operating
systems place the code right down in the
lowest memory addresses. The code segment
is also read-only. This is the part of the
memory where the actual assembled code
gets loaded. Lowest address.

Highest address.

Re
ad

-o
nly

 m
em

ory
.

memory and pointers

you are here 4   93

Your C Toolbox

You’ve got Chapter 2 under
your belt and now you’ve

added pointers and memory to
your tool box. For a complete list of

tooltips in the book, see Appendix X.

CHAPT
ER 2

scanf("%i", &x)
will allow a
user to enter
a number x
directly.

ints are
different sizes on different machines.

&x returns
the address
of x.

&x is called a
pointer to x.

The string.h
header contain

s

useful string
functions. strstr(a, b) will return the address of string b in string a.

A char pointer
variable x is
declared as
char * x.

Literal strings
are stored
in read-only
memory.

Initialize a new

array with a
string and it
will copy it.

Local variables
are stored on
the stack.

this is a new chapter   95

It's all about picking
the right tool for the
right job...

creating small tools3

Do one thing
 and do it well

Every operating system includes small tools.�
Small tools perform specialized small tasks, such as reading and writing files, or filtering

data. If you want to perform more complex tasks, you can even link several tools together.

But how are these small tools built? In this chapter, you’ll look at the building blocks of

creating small tools. You’ll learn how to control command-line options, how to manage

streams of information, and redirection, getting tooled up in no time.

96   Chapter 3

tiny tools

Small tools can solve big problems
A small tool is a C program that does one task and does it well.
It might display the contents of a file on the screen or list the
processes running on the computer. Or it might display the first
10 lines of a file or send it to the printer. Most operating systems
come with a whole set of small tools that you can run from the
command prompt or the terminal. Sometimes when you have a
big problem to solve, you can break it down into a series of small
problems, and then writing small tools for each of them.

Someone's written me a
map web application, and I'd
love to publish my route data
with it. Trouble is the format
of the data coming from my
GPS is wrong.

42.363400,-71.098465,Speed = 21

42.363327,-71.097588,Speed = 23

42.363255,-71.096710,Speed = 17

...

This is a latitude. This is a longitude.

If one small part of your program needs to
convert data from one format to another,
that's the perfect kind of task for a small tool.

data=[

{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},

{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},

{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},

...

]

A small tool
does one task
and does it well.

Operating systems like Linux are mostly made
up of hundreds and hundreds of small tools.

This is the data from the cyclist's
GPS. It's a comma-separated format

This is the data format the
map needs. It's in JavaScript
Object Notation, or JSON.

The data's
the same, but
the format's
a little
different.

you are here 4   97

creating small tools

Hey - who hasn't taken a code print out on a long ride only to find that it soon becomes...
unreadable? Sure - we all have. But with a little thought you should be able to piece together the
original version of some code.
This program can read comma-separated data from the command line and then display it in
JSON format. See if you can figure out what the missing code is. Pocket Code

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = ;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", , ,) == 3) {

 if (started)

 printf(",\n");

 else

 started = ;

 printf("{latitude: %f, longitude: %f, info: '%s'}", , ,);

 }

 puts("\n]");

 return 0;

}

We're using scanf to enter
more than one piece of data.

This is just a way of saying "Give me every character up to the end of the line".

The scanf()
function returns
the number of
values it was able
to read.

What will these values
be? Remember - scanf
always uses pointers.

What values need to be displayed?

Be careful how you set "started".

98   Chapter 3

pocket code

Hey - who hasn't taken a code print out on a long ride only to find that it soon becomes...
unreadable? Sure - we all have. But with a little thought you should be able to piece together the
original version of some code.
This program can read comma-separated data from the command line and then display it in
JSON format. See if you can figure out what the missing code is. Pocket Code

Solution

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = ;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", , ,) == 3) {

 if (started)

 printf(",\n");

 else

 started = ;

 printf("{latitude: %f, longitude: %f, info: '%s'}", , ,);

 }

 puts("\n]");

 return 0;

}

0

&latitude &longitude info

latitude longitude info
1

We need to begin with "started" set
to 0 - which means false.

Did you remember the "&"s on the number
variables? scanf needs pointers.

Once the loop has started, we can set
started to 1 - which is true.

We'll only display a comma if we've already displayed a previous line.

We don't need "&"s here because
printf is using the values, not
the addresses of the numbers.

creating small tools

>./geo2json
data=[
42.363400,-71.098465,Speed = 21
{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'}42.363327,-71.097588,Speed = 23
,
{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'}42.363255,-71.096710,Speed = 17
,
{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'}42.363182,-71.095833,Speed = 22
,
...
...
...
{latitude: 42.363182, longitude: -71.095833, info: 'Speed = 22'}42.362385,-71.086182,Speed = 21
,
{latitude: 42.362385, longitude: -71.086182, info: 'Speed = 21'}^D
]
>

File Edit Window Help JSON

So what happens when we compile and run this code? What will it do?

The program let's you enter GPS data at the keyboard and then it
displays the JSON-formatted data on the screen. Problem is, the
input and the output are all mixed up together. Also - there's a lot of
data. If you are writing a small tool, you don't want to type the
data in - you want to get large amounts of data by reading a file.

Also - how is the JSON data going to be used? Surely it can't be
much use on the screen?

So is the program running OK? Is it doing the right thing? Do
we need to change the code?

Test Drive

We really don't want the output
on the screen. We need it in a file
so we can use it with the mapping
application. Here - let me show you...

Several more hours worth of typing...

This is the data you type in.This is the data that's printed out. The input and the output are mixed up.

In the end you need to
press CTRL-D just to
stop the program.

you are here 4   99

100   Chapter 3

how it works

Here's how the program should work

Take the GPS from the bike and download the data.
It creates a file called gpsdata.csv with one line of data for
every location.

1

The geo2json tool needs to
read the contents of the
gpsdata.csv line by line...

2

...and then write that data in
JSON format into a file called
output.json.

3

gpsdata.csv

This is the GPS unit used to track the location of the bike.

The web page that contains the map
application reads the output.json file.
It displays all of the locations on the map.

4

output.json

geo2json

The data is downloaded
into this file.

Reading this file.

This is our geo2json tool.

Writing this file.

Our tool will write data to this file. The mapping application
reads the data from
output.json and displays in
on a map inside a web page.

you are here 4   101

creating small tools

But we're not using files...
The problem is, instead of reading and writing files, our program is
currently reading data from the keyboard and writing it to the display.

But that isn't good enough. The user won't want to type in all
of the data if it's already stored in a file somewhere. And if the
data in JSON format is just displayed on the screen, there's no
way the map within the web page will be able to read.

We need to make our program work with files. But how do
we do that? If we want to use files instead of the keyboard and
the display, what code will we have to change? Will we have to
change any code at all?

Is there a way of making our program
use files without changing code?
Without even re-compiling it?

Geek Bits

Tools that read data line by line, process
it and write it out again are called filters.
If you have a Unix machine, or you've
installed Cygwin on Windows, you
already have a few filter tools installed:

head - this tool displays the first few lines
of a file

tail - and this filter displays the lines at
the end of a file

sed - the stream editor lets you do things
like search and replace text

We'll see later how filters can be
combined together to form filter chains.

geo2json

>./geo2json

data=[

42.363400,-7
1.098465,Spe

ed = 21

{latitude: 4
2.363400, lo

ngitude: -71
.098465, inf

o: 'Speed =
21'}42.36332

7,-71.097588
,Speed = 23

,

{latitude: 4
2.363327, lo

ngitude: -71
.097588, inf

o: 'Speed =
23'}42.36325

5,-71.096710
,Speed = 17

,

{latitude: 4
2.363255, lo

ngitude: -71
.096710, inf

o: 'Speed =
17'}42.36318

2,-71.095833
,Speed = 22

,

...

...

...

{latitude: 4
2.363182, lo

ngitude: -71
.095833, inf

o: 'Speed =
22'}42.36238

5,-71.086182
,Speed = 21

,

{latitude: 4
2.362385, lo

ngitude: -71
.086182, inf

o: 'Speed =
21'}^D

]

>

File Edit Window Help JSON

The data is being read
from the keyboard.

Our tool converts the data into the new format.

The data is then sent to the
display, and not to a file.

102   Chapter 3

redirect data

We can use redirection
We're using scanf() and printf() to read from the keyboard
and write to the display. But the truth is they don't talk directly to the
keyboard and display. Instead they use the standard input and
standard output data streams.

A data stream is exactly what it sounds like it is: a stream of data
flowing into or out of a program. The standard input and standard
output are created by the operating system when the program runs.

The operating system controls how data gets into and out of
the standard input and output. If you run a program from the
command prompt or terminal, the operating system will send all of
the key strokes from the keyboard into the standard input stream.
If the operating system reads any data out of the standard output
stream, by default it will send that data to the display.

The scanf() and printf() don't know - or care - where the
data comes from or goes to. They just read and write standard input
and the standard output.

Now this might sound like it's kind of complicated. After all, why
not just have your program talk direct to the keyboard and screen?
Wouldn't that be simpler?

Well - there's a very good reason why operating systems
communicate with programs using the standard input and the
standard output:

You can redirect the standard data streams so
that they read and write data somewhere else -
such as to and from files.

The program receives data
through the standard input.

The program outputs data through the standard output.

you are here 4   103

creating small tools

You can redirect the Standard Input with <...

42.363400,-71.098465,Speed = 21

42.363327,-71.097588,Speed = 23

42.363255,-71.096710,Speed = 17

42.363182,-71.095833,Speed = 22

42.363110,-71.094955,Speed = 14

42.363037,-71.094078,Speed = 16

42.362965,-71.093201,Speed = 18

42.362892,-71.092323,Speed = 22

42.362820,-71.091446,Speed = 17

42.362747,-71.090569,Speed = 23

42.362675,-71.089691,Speed = 14

42.362602,-71.088814,Speed = 19

42.362530,-71.087936,Speed = 16

42.362457,-71.087059,Speed = 16

42.362385,-71.086182,Speed = 21

This is the file containing the
data from the GPS device.

> ./geo2json < gpsdata.csv
data=[
{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},
{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
{latitude: 42.363182, longitude: -71.095833, info: 'Speed = 22'},
{latitude: 42.363110, longitude: -71.094955, info: 'Speed = 14'},
{latitude: 42.363037, longitude: -71.094078, info: 'Speed = 16'},
...
...
{latitude: 42.362385, longitude: -71.086182, info: 'Speed = 21'}
]
>

File Edit Window Help MindYourStreams

The "<" operator tells the operating system that the
standard input of the program should be connected
to the gpsdata.csv file instead of the keyboard. So we
can send the program data from a file. Now we just
need to redirect it's output.

This is telling the operating
system to send the data
from the file into Standard
Input of the program.

Now we just see the
JSON data coming
from the program.

We don't have to type the GPS
data in - so we don't see it
mixed up with the output.

Instead of entering data at the keyboard we can use the "<"
operator to read the data from a file.

gpsdata.csv

geo2json

104   Chapter 3

redirect output

...and redirect the Standard Output with >
To redirect the standard output to a file, we need to use the > operator:

> ./geo2json < gpsdata.csv > output.json
>

File Edit Window Help MindYourStreams

data=[
{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},
{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
{latitude: 42.363182, longitude: -71.095833, info: 'Speed = 22'},
{latitude: 42.363110, longitude: -71.094955, info: 'Speed = 14'},
{latitude: 42.363037, longitude: -71.094078, info: 'Speed = 16'},
{latitude: 42.362965, longitude: -71.093201, info: 'Speed = 18'},
{latitude: 42.362892, longitude: -71.092323, info: 'Speed = 22'},
{latitude: 42.362820, longitude: -71.091446, info: 'Speed = 17'},
{latitude: 42.362747, longitude: -71.090569, info: 'Speed = 23'},
{latitude: 42.362675, longitude: -71.089691, info: 'Speed = 14'},
{latitude: 42.362602, longitude: -71.088814, info: 'Speed = 19'},
{latitude: 42.362530, longitude: -71.087936, info: 'Speed = 16'},
{latitude: 42.362457, longitude: -71.087059, info: 'Speed = 16'},
{latitude: 42.362385, longitude: -71.086182, info: 'Speed = 21'}
]

Because we've redirected the Standard Output, we don't
see any data appearing on the screen at all. But the
program has now created a file called output.json.

The output.json file is the one we needed to create
for the mapping application. Let's see if it works.

Now we are redirecting both the
Standard Input stream and the
Standard Output stream.

The output of the program will now be written to output.json.

There's no output
on the display at all
- it's all gone to the
output.json file.

output.json

output.json

geo2json

chapter title here

Test Drive
Now it's time to see if the new data file we've created can be used
to plot the location data on a map. We'll take a copy of the web
page containing the mapping program and put it into the same
folder as the output.json file. Then we need to open the web
page in a browser:

The map works.
The map inside the web page is able to read the data from our
output file.

Great! Now I can
publish my journeys
on the web!

Do this!

Download the web page from:
http://oreillyhfc.appspot.com/map.html

gpsapp

map.html

output.json

This is the
web page that
contains the map.

This is the file
that our program
created.

you are here 4   105

106   Chapter 3

bad data

But there's a problem with some of the data...
Our program seems to be able to read GPS data and format
it correctly for the mapping application. But after a few days a
problem creeps in.

I dropped the
GPS unit on a ride a
couple times and now
the map won't display

So what happened here? The problem is that there was some bad
data in the GPS data file:

But the geo2json program doesn't do any checking of the data it
reads - it just reformats the numbers and sends them to the output.

That should be easy to fix. We need to validate
the data

The decimal point is in the wrong place in this number.

...
{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
{latitude: 423.63182, longitude: -71.095833, info: 'Speed = 22'},
...

you are here 4   107

creating small tools

We need to add some code to the geo2json program that will check for bad latitude and
longitude values. We don't need anything fancy. If a latitude or longitude falls outside the
expected numeric, just display an error message and exit the program with an error status of 2:

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = 0;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", &latitude, &longitude, info) == 3) {

 if (started)

 printf(",\n");

 else

 started = 1;

 printf("{latitude: %f, longitude: %f, info: '%s'}", latitude, longitude, info);

 }

 puts("\n]");

 return 0;

}

If the latitude is < -90 or > 90 then
error with status 2. If the longitude is <
-180 or > 180 then error with status 2.

108   Chapter 3

lat long

We need to add some code to the geo2json program that will check for bad latitude and
longitude values. We don't need anything fancy. If a latitude or longitude falls outside the
expected numeric, just display an error message and exit the program with an error status of 2:

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = 0;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", &latitude, &longitude, info) == 3) {

 if (started)

 printf(",\n");

 else

 started = 1;

 printf("{latitude: %f, longitude: %f, info: '%s'}", latitude, longitude, info);

 }

 puts("\n]");

 return 0;

}

 if ((latitude < -90.0) || (latitude > 90.0)) {
 printf("Invalid latitude: %f\n", latitude);
 return 2;
 }
 if ((longitude < -180.0) || (longitude > 180.0)) {
 printf("Invalid longitude: %f\n", longitude);
 return 2;
 }

These lines display
simple errors messages.

These
lines will
exit
from
the main
method
with an
error
status
of 2.

These lines check that the latitude and longitude are in the correct range.

you are here 4   109

creating small tools

Test Drive
OK - so we now have the code in place to check that the latitude and
longitude are in range. But will it be enough to make our program cope
with bad data? Let's see.

We'll compile the code and then run the bad data through the program:

> gcc geo2json.c -o geo2json
> ./geo2json < gpsdata.csv > output.json
>

File Edit Window Help MindYourStreams

Hmmm... that's odd. We added the error
checking code but when we run the
program nothing appears to be different.
But now no points appear on the map at
all. What gives?

Study the code. What do you think happened? Is the code doing what we asked
it to? Why weren't there any error messages? Why did the mapping program think
that the entire output.json was corrupt?

This line will recompile
the program.
Then we run the
program again
with the bad data.

We'll save the output
in the output.json file.

WTF??? No
error message?

And where did all
the points go?

This means
"Welcome to
Finland"..

110   Chapter 3

code deconstruction

Code DeConstruction
The mapping program is complaining about the output.json file, so let's open her up and see what's
inside:

Once you open the file you can see exactly what happened. The program saw that there
was a problem with some of the data and it exited straight away. It didn't process any
more data and it did output an error message. Problem is, because we were redirecting
the standard output into the output.json, that meant we were also redirecting the
error message. So the program ended silently and we never saw what the problem was.

Now, we could have checked the exit status of the program, but really we want to be able
to see the error messages.

But how can we still display error messages if we are redirecting
the output?

data=[
{latitude: 42.363400, longitude: -71.098465, info: 'Speed = 21'},
{latitude: 42.363327, longitude: -71.097588, info: 'Speed = 23'},
{latitude: 42.363255, longitude: -71.096710, info: 'Speed = 17'},
Invalid latitude: 423.631805

Oh - the error message was also redirect to the output file.

This is the output.json file.

Geek Bits

If our program finds a problem in the data, it exits with a status of 2. But how can we check that
error status after the program has finished? Well - it depends what operating system you are
using. If you are running on a Mac, Linux, some other kind of Unix machine or if you are using
Cygwin on a Windows machine, you can display the error status like this:

If you are using the Command Prompt in Windows, then it's a little different:

Both commands do the same thing - they display the number returned by the program when it
finished.

C:\> echo %ERRORLEVEL%
2

File Edit Window Help

$ echo $?
2

File Edit Window Help

you are here 4   111

creating small tools

Wouldn't it be dreamy if there
was a special output stream for
errors so that I didn't have to mix
my errors in with standard output?
But I know it's just a fantasy...

112   Chapter 3

standard error

Introducing the Standard Error data stream
The standard output data stream is the default way of
outputting data from a program. But what if something exceptional
happens like an error? You'll probably want to deal with things
like error messages a little differently from the usual output.

That's why the Standard Error data stream was invented. The
Standard Error is a second output data stream that was created for
sending error messages.

Human beings generally have two ears and one mouth, but
processes are wired a little differently. Every process has one ear

- the Standard Output - and two mouths - the Standard Output
and the Standard Error.

This is one ear. This is another ear.

Single mouth. Multiple uses.

This is the
Standard Input.
One ear only.

There is no second ear.

This is the Standard Output.
This is the Standard Error.

Let's see how the operating system sets
these data streams up.

Human

Process

you are here 4   113

creating small tools

By default the Standard Error is sent
to the display
Remember we said that when a new process is created, the
operating system points the Standard Input at the keyboard and the
Standard Output at the screen? Well, the operating system creates a
Standard Error data stream at the same time and, like the Standard
Output, the Standard Error is sent to the display by default.

That means that if someone redirects the Standard Input and
Standard Output so they use files, the Standard Error will continue
to send data to the display.

And that's really cool because it means that even if the standard
output is redirected somewhere else, by default any messages
sent down the Standard Error will still be visible on the
screen.

So we can fix the problem of our hidden error messages by simply
displaying them on the Standard Error.

But how do we do that?

Standard Input comes from the keyboard.

Standard Output
goes to the display.

Standard Error
goes to the display.

Standard Error still
goes to the display.

Standard
Input comes
from a file.

Standard Output
goes to a file.

114   Chapter 3

choose your stream

fprintf prints to a file descriptor
We've already seen that the printf() function sends
data to the Standard Error. What we didn't tell you is
that the printf() function is just a version of a more
general function called fprintf():

printf("I like Turtles!");

fprintf(stdout, "I like Turtles!");

The fprintf() function allows you to choose
which data stream you want to send text to. You can
tell fprintf() to print to stdout (the Standard
Output) or stderr (the Standard Error).

Q: There's a stdout and a stderr. Is there a stdin?

A: Yes - and as you probably guessed - it refers to the Standard
Input.

Q: Can I print to it?

A: No - the Standard Input can't be printed to.

Q: Can I read from it?

A: Yes - using fscanf() - which is just like scanf()
except you can specify the data stream.

Q: Can I redirect the Standard Error?

A: Yes. ">" redirects the Standard Output. But "2>" redirects the
Standard Error.

Q: So I could write "geo2json 2> errors.txt"?

A: Yes.

When you call
printf, printf
actually calls
fprintf.

These two calls are equivalent.

This will send data to
a named data stream. stdout is the name of

the Standard Output.
This is the data that will be sent to the data stream.

you are here 4   115

creating small tools

Let's update the code to use fprintf
With just a couple small changes we can get our error messages
printing on the standard error:

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 int started = 0;

 puts("data=[");

 while (scanf("%f,%f,%79[^\n]", &latitude, &longitude, info) == 3) {

 if (started)

 printf(",\n");

 else

 started = 1;

 if ((latitude < -90.0) || (latitude > 90.0)) {

 printf("Invalid latitude: %f\n", latitude);

 fprintf(stderr, "Invalid latitude: %f\n", latitude);
 return 2;

 }

 if ((longitude < -180.0) || (longitude > 180.0)) {

 printf(stderr, "Invalid longitude: %f\n", longitude);

 fprintf(stderr, "Invalid longitude: %f\n", longitude);
 return 2;

 }

 printf("{latitude: %f, longitude: %f, info: '%s'}", latitude, longitude, info);

 }

 puts("\n]");

 return 0;

}

That means that the could should now work in exactly the same
way, except the error messages should appear on the Standard
Error instead of the Standard Output.

Let's run the code and see.

Instead of "printf"
we use "fprintf".

We need to specify "stderr" as the first parameter.

116   Chapter 3

test drive

Test Drive
If we recompile the program and then run the corrupted GPS
data through it again, this happens.

> gcc geo2json.c -o geo2json
> ./geo2json-page21 < gpsdata.csv > output.json
Invalid latitude: 423.631805

File Edit Window Help ControlErrors

That's excellent. This time, even though we are redirecting
the Standard Output into the output.json file, the error
message is still visible on the screen.

The Standard Error data stream was created with exactly this
in mind: to separate the error messages from the usual output.
But remember - the stderr and stdout are both just output
data streams. And there's nothing to prevent you using them for
anything.

Let's try out your new found Standard Input
and Standard Error skills.

�� The printf() sends data to the
Standard Output.

�� The Standard Output goes to the display
by default.

�� You can redirect the output of the Standard
Output to a file using > on the command
line.

�� scanf() reads data from the Standard
Input.

�� The Standard Input reads data from the
keyboard by default.

�� You can redirect the Standard Input to read
a file by using < on the command line.

�� The Standard Error is reserved for
outputting error messages.

�� You can redirect the Standard error using
2>.

Top Secret
We have reason to believe that the following program has been used in the transmission of secret messages:

#include <stdio.h>

int main()
{
 char word[10];
 int i = 0;
 while (scanf("%9s", word) == 1) {
 i = i + 1;
 if (i % 2)
 fprintf(stdout, "%s\n", word);
 else
 fprintf(stderr, "%s\n", word);
 }
 return 0;
}

We have intercepted a file called secret.txt and a scrap of paper with instructions:

Run with:
secret_messages < secret.txt > message1.txt 2> message2.txt

THE BUY SUBMARINE
SIX WILL EGGS
SURFACE AND AT
SOME NINE MILK PM

Your mission is to decode the two secret messages. Write your answers below.

i % 2 means "The
remainder left when
you divide by 2"

secret.txt 2> will redirect the Standard Error. > will redirect the Standard Output.

Message 1 Message 2

creating small tools

you are here 4   117

Top Secret - solved
We have reason to believe that the following program has been used in the transmission of secret messages:

#include <stdio.h>

int main()
{
 char word[10];
 int i = 0;
 while (scanf("%9s", word) == 1) {
 i = i + 1;
 if (i % 2)
 fprintf(stdout, "%s\n", word);
 else
 fprintf(stderr, "%s\n", word);
 }
 return 0;
}

We have intercepted a file called secret.txt and a scrap of paper with instructions:

Run with:
secret_messages < secret.txt > message1.txt 2> message2.txt

THE BUY SUBMARINE
SIX WILL EGGS
SURFACE AND AT
SOME NINE MILK PM

Your mission is to decode the two secret messages. Write your answers below.

secret.txt

Message 1 Message 2

THE
SUBMARINE
WILL
SURFACE
AT
NINE
PM

BUY
SIX
EGGS
AND
SOME
MILK

118   Chapter #

you are here 4   119

creating small tools

Head First: Operating System - we're so pleased
you have found time for us today.

O/S: Time-sharing - it's what I'm good at.

Head First: Now you've agreed o appear under
conditions of anonymity, is that right.

O/S: Don't Ask/Don't Tell. Just call me O/S.

Head First: Does it matter what kind of O/S you
are?

O/S: A lot of people get pretty heated over which
operating system to use. But for simple C programs,
we all behave pretty much the same way.

Head First: Because of the C Standard Library?

O/S: Yeah - if you're writing C then the basics are
the same everywhere. Like I always say - we're all the
same with the lights out. Know what I'm saying?

Head First: Oh - of course. Now you are in charge
or loading programs into memory?

O/S: I turn them into processes - that's right.

Head First: Important job?

O/S: I like to think so. You can't just throw a
program into memory and let it struggle, you
know? There's a whole bunch of setup. I need to
allocate memory for them and connect them to their
standard data streams so they can use things like
displays and keyboards.

Head First: Like you just did for the geo2json
program?

O/S: That guy's a real tool.

Head First: Oh - I'm sorry.

O/S: No - I mean he's a real tool - a simple text
based program.

Head First: Ah - I see. And do you deal with a lot
of tools?

O/S: Ain't that life? It depends on the operating
system. UNIX-style systems use a lot of tools to get
the work done. Windows uses them less, but they're
still important.

Head First: Creating small tools that work together
is almost a philosophy, isn't it?

O/S: It's a way of life. Sometimes when you've got a
big problem to solve, it can be easier to break it down
into a set of simpler tasks.

Head First: Then write a tool for each task?

O/S: Exactly. Then use the operating system - that's
me - to connect the tools together.

Head First: Are there any advantages to that
approach?

O/S: The big one is simplicity. If you have a set of
small programs, they are easier to test. The other
thing is that once you've built a tool you can use it in
other projects.

Head First: Any downsides?

O/S: Well - tools don't look that great. They work on
the command line usually, so they don't have a lot of
what you might call Eye Appeal.

Head First: Does that matter?

O/S: Not so much as you'd think. So long as you
have a set of solid tools to do the important work,
you can always connect them to a nice interface,
whether it's a Desktop application or a web site. But -
hey look at the time. Sorry I got to preempt you.

Head First: Oh well thank you O/S it's been a
pleas... zzzzzz.....

The Operating System Exposed
This week’s interview:
Does the Operating System Matter?

120   Chapter 3

reuseable tools

Small tools are flexible
One of the great things about small tools is their flexibility. If you
write a program that does one thing really well, chances are you will
be able to use it in lots of contexts. If you create a program that can
search for text inside a file, say, then chances are you going to find
that program useful in more than one place.

For example - think about our geo2json tool. We created it to help
display cycling data, right? But there's no reason we can't use it for
some other purpose... like investigating... the

This is
latitude 26°.

This is
latitude 34°.

This is longitude -64°.
This is longitude -76°.

To see how flexible our tool is, let's use it for a completely different
problem. Instead of just displaying data on a map, let's try to use
it for something a little more complex. Let's say we want to read in
a whole set of GPS data like before, but instead of just displaying
everything, let's just display the information that falls inside the
Bermuda Rectangle.

That means we will only display data that matches these conditions:

((latitude > 26) && (latitude < 34))

((longitude > -76) && (longitude < -64))

So where do we need to begin?

you are here 4   121

creating small tools

We don't want to change the geo2json tool

Does one job and does it well

We don't really want to modify the geo2json tool because
we want it to do just one task. If we make the program do
something more complex, we'll cause problems for our users
who expect the tool to keep working in exactly the same way.

Our geo2json tool displays all of the data it's given. So what
should we do? Should we modify geo2json so that it exports
data and also checks the data?

Well, we could - but remember, a small tool:

I really don't want
to filter data. I need
to keep on displaying
everything.

So if don't want to change the
geo2json what should we do?

Small tools like geo2json all follow these design principles:

* They can read data from the Standard Input stream

* They can display data on the Standard Output stream

* They deal with text data rather than obscure binary formats

* They each perform one simple task

Tips for Designing Small Tools

122   Chapter 3

two tools

A different task needs a different tool

We'll feed all of our data
into the bermuda tool.
This data includes events inside and outside the Bermuda Rectangle.

The tool will only pass one data
that falls inside the rectangle.

So we will only pass Bermuda
Rectangle data to geo2json

geo2json will work exactly
the same as before.

We will produce a map
containing only Bermuda
Rectangle data.

By splitting the problem down into two tasks we will be able
to leave our geo2json untouched. That will mean that its
current users will still be able to use it. The question is:

How will we connect our two tools together?

geo2json

bermuda

If we want to skip over the data that falls outside the Bermuda
Rectangle, then we should build a separate tool that does just
that.

So - we'll have two tools: a new bermuda tool that filters
out data that is outside the Bermuda Rectangle, and then our
original geo2json tool that will convert the remaining data
for the map.

This is how we'll connect the program's together:

you are here 4   123

creating small tools

We'll connect our input and our output with a pipe
We've already seen how we can use redirection to connect the
Standard Input and the Standard Output of a program files. But
now we'll connect the Standard Output of the bermuda
tool to the Standard Input of the geo2json, like this:

This is a pipe.
A pipe can be used to connect the
standard output of one process to the
standard input of another process.

That way, whenever the bermuda tool sees a piece
of data inside the Bermuda Rectangle it will send it to its
Standard Output. The pipe will send that data from the
Standard Output of the bermuda tool to Standard Input of
the geo2json tool.

The Operating System will handle the details of exactly how
the pipe will do this. All we have to do to get things running
is issue a command like this:

bermuda | geo2json

The output of bermuda will become the input of geo2json.

This is the pipe.The operating
system will run
both programs at
the same time.

So now it's time we built the bermuda tool.

geo2json

bermuda

The output of bermuda...

...feeds into the input of geo
2json.

The | symbol
is a pipe that
connects an
output to an
input.

124   Chapter 3

tool notes

The bermuda tool
The bermuda tool will work in a very similar way to the
geo2json tool - it will read through a set of GPS data, line
by line, and then send data to the Standard Output.

But there will be two big differences. First, it won't send every
piece of data to the Standard Output, just the lines that are
inside the Bermuda Rectangle. The second difference is that
the bermuda tool will always output data in the same CSV
format used to store GPS data.

This is what the pseudo-code for the tool looks like:

Read the latitude, longitude and other data for each line: if the latitude is between 26 and 34 then:
 if the longitude is between -64 and -76 then:

 display the latitude, longitude and other data

Let's turn the pseudo-code into C.

you are here 4   125

creating small tools

Pool Puzzle
Your goal is to complete the code for

the bermuda.c program. Take code
snippets from the pool and place
them into the blank lines below.
You won’t need to use all the
snippets of code in the pool.

Note: each thing from
the pool can only be
used once!

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 while (scanf("%f,%f,%79[^\n]", , ,) == 3)

 if ((>) (<))

 if ((>) (<))

 printf("%f,%f,%s\n", , ,);

 return 0;

}

&longitude

yeti

info

||

||
&&-64

-76

34
26

longitudelongitude

latitude

latitude

&info
info &latitude

&&

latitude

longitude

126   Chapter 3

out of the pool

Pool Puzzle Solution
Your goal is to complete the code for

the bermuda.c program. Take code
snippets from the pool and place
them into the blank lines below.
You won’t need to use all the
snippets of code in the pool.

Note: each thing from
the pool can only be
used once!

#include <stdio.h>

int main()

{

 float latitude;

 float longitude;

 char info[80];

 while (scanf("%f,%f,%79[^\n]", , ,) == 3)

 if ((>) (<))

 if ((>) (<))

 printf("%f,%f,%s\n", , ,);

 return 0;

}

&longitude

yeti

info

||

||

&& -64-76

3426

longitude longitude

latitude

latitude

&info

info

&latitude

&&latitude

longitude

you are here 4   127

creating small tools

Test Drive
Now we've completed the bermuda tool, it's time to use it
with the geo2json tool and see if we can map any weird
occurrences inside the Bermuda Rectangle.

Once we've compiled both of the tools we can fire up a
console and then run the two programs together like this:

Do this!

You can download the spooky.csv file at:
http://oreillyhfc.appspot.com/spooky.csv

(./bermuda | ./geo2json) < spooky.csv > output.json

By connecting the two programs together with a pipe, we
can treat these two separate programs as if they were a single
program - so we can redirect the standard input and standard
output like we did before.

Excellent - the program works!

> (./bermuda | ./geo2json) < spooky.csv > output.json
File Edit Window Help MyAngle

Remember - if you are running on
windows, you don't need the "./". This is the pipe that

connects the processes.
When you connect the
two programs together
you can treat them as
a single program.

This is the file containing all the events.

The bermuda tool filters out the events we want to ignore.
The geo2json tool will convert
the events to JSON format.

We'll save the
output in this file.

128   Chapter 3

no dumb questions

Q:Why is it important that small tools
use the Standard Input and Standard
Output streams?

A: Because by using the Standard
Streams it makes it easier to connect tools
together with pipes.

Q: Why does that matter?

A: Small tools usually don't solve an
entire problem on their own - just a small
technical problem, like converting data
from one format to another. But if you can
combine them together then you can solve
large problems.

Q: What actually is a pipe?

A: The exact details are down to the
operating system. Pipes might be made
from sections of memory or temporary files.
The important thing is that accept data in
one end, and send the data out of the other
in sequence.

Q: So if two programs are piped
together, does the first program have
to finish running before the second
program can start?

A: No. Both of the programs will run at
the same time and as output is produced
by the first program it can be consumed by
the second program.

Q: Why do small tools use text?

A: It's the most open format. If a
small tool uses text it means that any
other programmer can easily read and
understand the output by just using a text
editor. Binary formats are normally obscure
and hard to understand.

Q: Can I connect several programs
together with pipes?

A: Yes - just add more '|' between each
program name. A series of connected
processes is called a pipeline.

Q: If several processes are
connected together with pipes and then
I use '>' and '<' to redirect the Standard
Input and Output, which processes will
have their Input and Output redirected?

A: The '<' will send a file's contents to
the first process in the pipeline. The '>' will
capture the Standard Output from the last
process in the pipeline.

�� If you want to perform a different
task, consider writing a separate
small tool.

�� Design tools to work with Standard
Input and Standard Output.

�� Small tools normally read and write
text data.

�� You can connect the Standard
Output of one process to the
Standard Input of another process
using a pipe.

you are here 4   129

creating small tools

ufos.csv

disappearances.csv

other.csv

gpsdata.data

categorize

poof!

poof!

But what if we want to output to
more than one file?
So we've looked at how to read data from one file and write
to another file using redirection - but what if the program
needs to do something a little more complex - like send data
to more than one file?

Imagine you need to create another tool that will read a set
of data from a file, and then split it into other files.

So what's the problem? We can't write to files, right? Trouble
is with redirection you can only write to one file. So what
do we do?

130   Chapter 3

data streams on the fly

Roll your own data stream
When a program runs the operating system gives it three data
streams: the Standard Input, the Standard Output and the
Standard Error. But sometimes you need to create other data
streams on the fly.

The good news is tat the operating system doesn't limit you to the
data streams you are dealt when the program starts. You can roll
your own as the program runs.

Each data is represented by a pointer to a FILE and you can create
a new data stream using the fopen() function:

FILE* in_file = fopen("input.txt", "r");

FILE *out_file = fopen("output.txt", "w");

This will create a
data stream to
read from a file.

This is the name of the file.

This will create a
data stream to
write to a file.

This is the mode - "r" means "read".

This is the name of the file.
This is the mode - "w" means "write".

The fopen() function takes two parameters - a filename and a
mode. The mode can be "w" to write to a file, "r" to read from a
file or "a" to append data to the end of a file.

Once you've created a data stream you can print to it using
fprintf - just like before. But what if you need to read from a
file? Well there's also a fscanf() function to help you do that to:

The data stream mode is:
"w" = write,
"r" = read or
"a" = append.

fprintf(out_file, "Don't wear %s with %s", "red", "green");

fscanf(in_file, "%79[^\n]\n", sentence);

Finally, when you're finished with a data stream, you need to close
it. The truth is that all data streams are automatically closed when
the program ends, but it's still a good idea to always close the data
stream yourself:

fclose(in_file);

fclose(out_file);

Let's try this out now.

you are here 4   131

creating small tools

This is the code for a program to read all of the data from a GPS
file and then write the data into one of three other files. See if
you can fill in the missing blanks:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 char line[80];

 FILE* in = fopen("gpsdata.data",);

 FILE* file1 = fopen("ufos.csv",);

 FILE* file2 = fopen("disappearances.csv",);

 FILE* file3 = fopen("others.csv",);

 while ((in, "%79[^\n]\n", line) == 1) {

 if (strstr(line, "UFO"))

 (file1, "%s\n", line);

 else if (strstr(line, "Disappearance"))

 (file2, "%s\n", line);

 else

 (file3, "%s\n", line);

 }

 (file1);

 (file2);

 (file3);

 return 0;

}

132   Chapter 3

read and write

This is the code for a program to read all of the data from a GPS
file and then write the data into one of three other files. See if
you can fill in the missing blanks:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char line[80];
 FILE* in = fopen("gpsdata.data",);
 FILE* file1 = fopen("ufos.csv",);
 FILE* file2 = fopen("disappearances.csv",);
 FILE* file3 = fopen("others.csv",);
 while ((in, "%79[^\n]\n", line) == 1) {
 if (strstr(line, "UFO"))
 (file1, "%s\n", line);
 else if (strstr(line, "Disappearance"))
 (file2, "%s\n", line);
 else
 (file3, "%s\n", line);
 }
 (file1);
 (file2);
 (file3);
 return 0;
}

"r"
"w"

"w"
"w"

fscanf

fprintf

fprintf

fprintf

fclose
fclose
fclose

The program runs, but...
If you compile and run the program with:

gcc categorize.c -o categorize && ./categorize

the program will read the gpsdata.csv and split out the data, line by line into
three other files, ufos.csv, disappearances.csv, and other.csv.

That's great, but what if a user wanted to split the data up differently? What
if they wanted to search for different words, or write to different files? Could
they do that without needing to recompile the program each time?

ufos.csv

disappearances.csv

other.csv

you are here 4   133

creating small tools

There's more to main() than we said
The thing is, any program you write will need to give the user the ability to
change the way it works. If it's a GUI program, you will probably need to give
it preferences. And if it's a command line program, like our categorize tool, it
will need to give the user the ability to pass it command line arguments:

./categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv

Like any array in C, we need some way of knowing how long the
array is. That's why the main() function has two parameters.
The argc value is a count of the number of elements in the array.

Command line arguments really give your program a lot more
flexibility and it's worth thinking about which things you want
your users to tweak at run time. It will make your program a lot
more valuable to them.

OK - let's see how we can add a little flexibility
to the categorize program.

	 The first argument
contains the name
of the program as
it was run by the
user.

That means that the first proper
command line argument is
args[1].

But how do we read command line arguments from within the
program? So far, every time we have created a main() function, we've
written it without any arguments. But the truth is, there are actually two
forms of the main() function we can use. This is the second version:

This is the first word to filter for. All of the mermaid data
will be stored in this file.

This means we want to check for Elvis.

All the Elvis sightings
will be stored here.

Everything
else goes into
this file.

int main(int argc, char* args[])

{

 Do stuff....

}

The main() function can read the command line arguments as
an array of strings. Actually, of course, because C doesn't really
have strings built-in, it reads them as an array of character pointers to
strings. Like this:

This is args[0].

The first argument is actually the
name of the program being run.

This is args[1]. This is args[2]. This is args[3]. This is args[4]. This is args[5].

"./categorize" "mermaid" "mermaid.csv" "Elvis" "elvises.csv" "the_rest.csv"

134   Chapter 3

code magnets

Code Magnets
This is a modified version of the categorize program that can read the keywords
to search for and the files to use from the command line. See if you can fit the correct
magnets into the correct slots.

The program is run using
./categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char* args[])

{

 char line[80];

 if (!=) {

 fprintf(stderr, "You need to give 5 arguments\n");

 return 1;

 }

 FILE* in = fopen("gpsdata.data", "r");

 FILE* file1 = fopen(, "w");

 FILE* file2 = fopen(, "w");

 FILE* file3 = fopen(, "w");

you are here 4   135

creating small tools

 while (fscanf(in, "%79[^\n]\n", line) == 1) {

 if (strstr(line,))

 fprintf(file1, "%s\n", line);

 else if (strstr(line,))

 fprintf(file2, "%s\n", line);

 else

 fprintf(file3, "%s\n", line);

 }

 fclose(file1);

 fclose(file2);

 fclose(file3);

 return 0;

}

args[4]

6

args[2]

5

argc

args[1]

args[5]

args[3]

136   Chapter 3

code magnets solution

Code Magnets Solution
This is a modified version of the categorize program that can read the keywords
to search for and the files to use from the command line. See if you can fit the correct
magnets into the correct slots.

The program is run using
./categorize mermaid mermaid.csv Elvis elvises.csv the_rest.csv

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char* args[])

{

 char line[80];

 if (!=) {

 fprintf(stderr, "You need to give 5 arguments\n");

 return 1;

 }

 FILE* in = fopen("gpsdata.data", "r");

 FILE* file1 = fopen(, "w");

 FILE* file2 = fopen(, "w");

 FILE* file3 = fopen(, "w");

args[4]

6

args[2]

argc

args[5]

you are here 4   137

creating small tools

 while (fscanf(in, "%79[^\n]\n", line) == 1) {

 if (strstr(line,))

 fprintf(file1, "%s\n", line);

 else if (strstr(line,))

 fprintf(file2, "%s\n", line);

 else

 fprintf(file3, "%s\n", line);

 }

 fclose(file1);

 fclose(file2);

 fclose(file3);

 return 0;

}

5

args[1]

args[3]

138   Chapter 3

test drive

Test Drive
OK - let's try out the new version of the code. We'll need a test data file
called gpsdata.csv.

30.685163,-68.137207,Type=Yeti

28.304380,-74.575195,Type=UFO

29.132971,-71.136475,Type=Ship

28.343065,-62.753906,Type=Elvis

27.868217,-68.005371,Type=Goatsucker

30.496017,-73.333740,Type=Disappearance

26.224447,-71.477051,Type=UFO

29.401320,-66.027832,Type=Ship

37.879536,-69.477539,Type=Elvis

22.705256,-68.192139,Type=Elvis

27.166695,-87.484131,Type=Elvis

> categorize UFO aliens.csv Elvis elvises.csv the_rest.csv
File Edit Window Help ThankYouVeryMuch

gpsdata.data

Now we'll need to run the categorize program with a few command
line arguments saying what text to look for and what file names to use:

When the program runs, the following files are produced:

you are here 4   139

creating small tools

28.304380,-74.575195,Type=UFO

26.224447,-71.477051,Type=UFO

aliens.csv

28.343065,-62.753906,Type=Elvis

37.879536,-69.477539,Type=Elvis

22.705256,-68.192139,Type=Elvis

27.166695,-87.484131,Type=Elvis

elvises.csv

30.685163,-68.137207,Type=Yeti

29.132971,-71.136475,Type=Ship

27.868217,-68.005371,Type=Goatsucker

30.496017,-73.333740,Type=Disappearance

29.401320,-66.027832,Type=Ship

the_rest.csv

Elvis has left the building.

If we run elvises.txt through geo2json
we can display it on a map.

Although at Head First Labs we never make mistakes (cough) it's important in real-world
programs to check for problems when you open a file for reading or writing. Fortunately
if there's a problem opening a data stream, the fopen() function will return the value 0.
That means if you want to check for errors, you should change code like:

 FILE* in = fopen("i_dont_exist.txt", "r");

to this:

 FILE* in;
 if (!(in = fopen("dont_exist.txt", "r"))) {
 fprintf(stderr, "Can't open the file.\n");
 return 1;
 }

Safety Check

140   Chapter 3

command-line options

Overheard at the Head First Pizzeria

Anchovy and pineapple
thick crust! Make it
snappy - we need it for
immediate delivery.

Chances are any program you write is going to need
options. If you create a chat program, it's going to
need preferences. If you write a game, the user will
want to change the shape of the blood spots. And if
you're writing a command line tool, you are probably
going to need to add command-line options.

Command-line options are the little switches you often
see with command line tools:

ps -ae

tail -f logfile.out

Display all the processes,
including their environments.

Display the end of the file, but wit for new data to be added to the end of the file.

you are here 4   141

creating small tools

Let the library do the work for you
Many programs use command line options - so there's a special
library function you can use to make dealing with options a little
easier. It's called getopt() and each time you call it, it returns
the next option it finds on the command line.

Let's see how it works. Imagine we have a program that can take a
set of different options:

rocket_to -e 4 -a Brasilia Tokyo London

Use 4 engines. Awesomeness mode enabled.

This program needs one option that will take a value (-e = engines)
and another that is simply on or off (-a = awesomeness). You can
handle these options by calling getopt() in a loop like this:

Inside the loop we have a switch statement to handle each of
the valid options. The string "ae:" tells the getopt() function
that "a" and "e" are valid options. The "e" is followed by a ":" to tell
getopt() that the -e needs to be followed by an extra argument.
getopt() will point to that argument with the optarg variable.

When the loop finishes, we tweak the args and argc variables
to skip past all of the options and get to the main command line
arguments. That will make our args array look like this:

#include <unistd.h>

...

while ((ch = getopt(argc, args, "ae:")) != EOF)
 switch(ch) {
 ...
 case 'e':
 engine_count = optarg;
 ...
 }

argc -= optind;
args += optind;

Brasilia Tokyo London

This is args[0]. This is args[1]. This is args[2].

You will need to
include this header.

This means "The a
option is valid, so is
the e option."

The ":" means that the e
option needs an argument.

The code to handle
each option goes here.

We're reading the
argument for the
'e' option here.

optind stores the number of
strings read from the command

line to get past the optio
ns. These final two lines

make sure we skip past
the options we read.

	 After
processing
the
arguments,
the 0th

argument will no longer
be the program name.

args[0] will instead point to the
first command line argument
that follows the options.

142   Chapter 3

pizza puzzle

#include <stdio.h>

#include <unistd.h>

int main(int argc, char* args[])

{

 char* delivery = "";

 int thick = 0;

 int count = 0;

 char ch;

 while ((ch = getopt(argc, args, "d ")) != EOF)

 switch (ch) {

 case 'd':

 = ;

 break;

 case 't':

 = ;

 break;

 default:

 fprintf(stderr, "Unknown option: '%s'\n", optarg);

 return ;

 }

Pizza Pieces
Looks like someone's been taking a bit out of the pizza code. See if you can replace
the pizza slices and rebuild the order_pizza program.

you are here 4   143

creating small tools

 argc -= optind;

 args += optind;

 if (thick)

 puts("Thick crust.");

 if (delivery[0])

 printf("To be delivered %s.\n", delivery);

 puts("Ingredients:");

 for (count = ; count < ; count++)

 puts(args[count]);

 return 0;

}

1

thick

argcdelivery

:t

optarg

1
0

144   Chapter 3

pizza unpuzzled

#include <stdio.h>

#include <unistd.h>

int main(int argc, char* args[])

{

 char* delivery = "";

 int thick = 0;

 int count = 0;

 char ch;

 while ((ch = getopt(argc, args, "d ")) != EOF)

 switch (ch) {

 case 'd':

 = ;

 break;

 case 't':

 = ;

 break;

 default:

 fprintf(stderr, "Unknown option: '%s'\n", optarg);

 return ;

 }

Pizza Pieces Solution
Looks like someone's been taking a bit out of the pizza code. See if you can replace
the pizza slices and rebuild the order_pizza program.

1thick

delivery

: t

optarg

1

The 'd' is followed by a colon because it takes an argument.

We'll point the delivery variable to the
argument supplied with the 'd' option.

Remember - in C setting something to 1 is equivalent to setting it to true.

you are here 4   145

creating small tools

 argc -= optind;

 args += optind;

 if (thick)

 puts("Thick crust.");

 if (delivery[0])

 printf("To be delivered %s.\n", delivery);

 puts("Ingredients:");

 for (count = ; count < ; count++)

 puts(args[count]);

 return 0;

}

argc0

After processing the options, the
first ingredient is args[0].

We'll keep looping while we're less than argc.

146   Chapter 3

test drive

Test Drive
Now we can try out the pizza order program:

> gcc order_pizza.c -o order_pizza
> ./order_pizza Anchovies
Ingredients:
Anchovies
> ./order_pizza Anchovies Pineapple
Ingredients:
Anchovies
Pineapple
> ./order_pizza -d now Anchovies Pineapple
To be delivered now.
Ingredients:
Anchovies
Pineapple
> ./order_pizza -d now -t Anchovies Pineapple
Thick crust.
To be delivered now.
Ingredients:
Anchovies
Pineapple
> ./order_pizza -d
order_pizza: option requires an argument -- d
Unknown option: '(null)'
>

File Edit Window Help Anchovies?

It works!
Well - we've covered a lot in this chapter. We got deep into
the Standard Input, Standard Output and Standard Error.
Learned how to talk to files using redirection and our own
custom data streams. Finally we learned how to deal with
command line arguments and options.

A lot of C programmers spend their time creating small tools,
and most of the small tools you see in operating systems like
Linux are written in C. If you're careful in how you design
them, and if you make sure that you design tools that do one
thing and do that one thing well, you're well on course to
becoming a kick-ass C coder.

We compile
the program.

We're not using
any options the
first couple of
times we call it.
Then we try out the 'd' option
and give it an
argument of 'now'.

Then the 't' option.
Remember - the 't'
option doesn't take
any arguments.
Finally we'll try
skipping the
argument for 'd' - it creates an error.

you are here 4   147

creating small tools

Q: Can I combine options like "-td now" instead of "-d now
-t"?

A: Yes you can. The getopts() function will handle all of
that for you.

Q: What about changing the order of the options?

A: Yes - it won't matter if you type in "-d now -t" or "-t -d now" or
"-td now".

Q: So if the program sees a value on the command line
beginning with a "-" it will treat it as an option?

A: If it reads it before it gets to the main command line
arguments it will, yes.

Q: But what if I want to pass negative numbers as
command line arguments like "set_temperature -c -4"? Won't it
think that the 4 is an option not an argument?

A: To avoid ambiguity, you can split your main arguments from
the options using "--". So you would write "set_temperature -c -- -4".
getopts() will stop reading options when it sees the "--", so
the rest of the line will be read as simple arguments.

�� There are two versions of the
main() function - one with,
and one without command line
arguments.

�� Command line arguments are
passed to main() as an argument
count and an array of pointers to the
argument strings.

�� Command line options are command
line arguments prefixed with '-'

�� The getopt() function helps you
deal with command line options.

�� You define valid options by passing a
string to getopt() like '"ae:"'

�� A ':' following an option in the string
means that the option takes an
additional argument.

�� getopt() will record the options
argument using the optarg
variable.

�� After you have read all of the options
you should skip past them using the
optind variable.

148   Chapter 3

c toolbox

You can change where the
Standard Input and Output are connected to using Redirection.

Your C Toolbox

You’ve got Chapter 3 under
your belt and now you’ve

added small tools to your tool
box. For a complete list of tooltips

in the book, see Appendix X.

CH
AP

T
ER

 3

C functions like
printf and scanf
use the Standard
Output and
Standard Input to
communicate.

The Standard Output goes
to the display by default.

The Standard
Input reads from
the keyboard by
default.

The Standard
Error is a
separate outpu

t

data stream
intended for
error messages.

You can print to
the Standard
Error using
fprintf(stderr,...)

You can create
 custom

data streams with

fopen("filenam
e", mode)

The mode can be "w" to write, "r" to read or "a" to append.

Command line
arguments are
passed to main()

as an array of

string pointers

The getopts()
function makes
it easier to
read command
line options.

this is a new chapter   149

using multiple source files4

Break it down,
Build it up

If you create a big program, you don’t want a big source file.�
Can you imagine how difficult and time-consuming a single source file for an enterprise

level program would be to maintain? In this chapter, you’ll learn how C allows you to break

your source code into small manageable chunks and then rebuild them into one huge

program. Along the way, you’ll learn a bit more about data-type subtleties, and get to

meet your new best friend: make.

Who's he
calling "short"?

150   Chapter 4

The amount of fuel the
rocket will need (gallons)

The total number of
components in the rocket

C can handle quite a few different types of data: characters and whole numbers, floating point
values for every day values, and floating point numbers for really precise scientific calculations.
You can see a few of these data-types listed on the opposite page. See if you can figure out which
data-types were used in the each of the examples.

Remember: each example uses a different data-type.

Guess the Data Type

The distance from the
launch pad to the star
Proxima Centauri (light
years)

The numbers of stars
in the Universe that we
won't be visiting

Each letter on the
countdown display

The number of
minutes to launch

float

double

Floating points Integers

charint

short long That's right! In C
chars are actually
stored using the their
character codes.
That means they're
just numbers too!

These are numbers
containing decimal
points

you are here 4   151

chapter title here

90:00
minutes

The amount of fuel the
rocket will need (gallons)

The total number of
components in the rocket

float

int

C can handle quite a few different types of data: characters and whole numbers, floating point
values for every day values, and floating point numbers for really precise scientific calculations.
You can see a few of these data-types listed on the opposite page. See if you can figure out which
data-types were used in the each of the examples.

Remember: each example uses a different data-type.

Guess the Data Type Solution

152   Chapter 4

The distance from the
launch pad to the star
Proxima Centauri (light
years)

The numbers of stars
in the Universe that we
won't be visiting

Each letter on the
countdown display

The number of
minutes to launch

double

char

short
long

90:00
minutes

you are here 4   153

chapter title here

Let's see why...

154   Chapter 4

data types

char
Each character is stored in the computer's memory as a character code. And

that's just a number. So when the computer sees 'A', to the computer it is just

the same as seeing the literal number 65.

int
If you need to store a whole number, you can generally just use an int. On most

machines an int can store numbers up to a few million.

long
Yes - but what if you want to store a really large count? That's what the long

data-type was invented for. On some machines the long data-types takes up twice

the memory of an int and it can hold numbers up in the billions. But because

most computers can deal with really large ints, on a lot of machines the long

data-type is exactly the same size as an int.

float
The float data-type is the basic data-type for storing floating point numbers.

For most everyday floating point numbers - like the amount of fluid in your

orange frappe mochaccino - you can use a float.

double
Yes - but what if you want to get really precise? If you want to perform

calculations that are accurate to a very large number of decimal places then

you might want to use a double. A double takes up twice the memory of a

float, and it uses that extra space to store numbers that are larger and more precise.

Your quick guide to data types

short
But sometimes you want to save a little memory. Why use an int if you just want

to store numbers up to few hundreds or thousands? That's what a short is for. A

short number usually takes up about half the space of an int.

65 is the ASCII code for 'A'.

you are here 4   155

using multiple source files

Don't put something big into something small
When you are passing around values you need to be careful
that the type of the value matches the type of the variable
your are going to store it in.

Different datatypes use different amounts of memory. So
you need to be careful that you don't try to store a value
that's too large for the amount of space allocated to a
variable. short variables take up less memory than ints
and ints take up less memory than longs.

Now there's no problem storing a short value inside
an int or a long variable. There will plenty of space in
memory and your code will work correctly:

short x = 15;

int y = x;

printf("The value of y = %i\n", y);

This will say that y = 15.

The problems start to happen if you go the other way
round: if, say, you try to store an int value into a short.

int x = 100000;

short y = x;

print("The value of y = %hi\n", y);

'%hi' is the proper code to format a short value.

Sometimes the compiler will be able to spot that
you are trying to store a really big value into a small
variable, and then give you a warning. But a lot of
the time the compiler won't be smart enough and
it will compile the code without complaining. But
then, when you come to run the code the computer
won't be able to store a number 100,000 into a
short variable. The computer will fit in as many
1s and 0s as it can fit, but the number that ends up
stored inside the y variable will be very different from
the one you sent it:

The value of y = -31072

Geek Bits

So why did putting a large number into a short
go negative? Numbers are stored in binary. This is
what 100,000 looks like in binary:

 x <- 0001 1000 0110 1010 0000

But when the computer tried to store that value
into a short the computer only allowed it a
couple of bytes of storage. The program stored
just the left hand side of the number:

 y <- 1000 0110 1010 0000

Signed values in binary begin with a 1 in highest
bit are treated as negative numbers. And this
shortened value is equal to this in decimal:

 -31072

short
int

long

The contents of a long
may be too large to fit
in a short or an int.

The contents of a short will always fit in an int or a long

156   Chapter 4

cast with float

unsigned
The number will always be positive. Because it doesn't
need to worry about recording negative numbers,
unsigned numbers can store larger numbers. So an
unsigned int stores numbers from 0 to a maximum
value that is about twice as large as the maximum
number that can be stored inside an int. There's also a
signed keyword, but you almost never see it, because
all data-types are signed by default.

 unsigned char c;

long
That's right - you can prefix a data-type with the word
long and make it longer. So a long int is a longer
version of an int - which means it can store a larger
range of numbers. And a long long is longer than a long.
You can also use long with floating point numbers. But
a long double doesn't store a greater range of numbers
than a double - it just records a more precise value.

 long double d;

This will probably store
numbers from 0 to 255.

A really REALLY precise number.

You can put some other keywords before data-types to change the way that the numbers are interpreted:

Use casting to put floats into whole numbers
What do you think this piece of code will display?

int x = 7;

int y = 2;

float z = x / y;

printf("z = %f\n", z);

The answer? 3.0000. Why is that? Well x and y are both integers and if you
divide integers you always get a rounded off whole number - in this case 3.

What do you do if you want to perform calculations on whole numbers and
you want to get floating point results? You could store the whole numbers
into float variables first, but that's a little wordy. Instead you can use a cast to
convert the numbers on the fly:

int x = 7;

int y = 2;

float z = (float)x / (float)y;

printf("z = %f\n", z);

The (float) will cast an integer value into a float value. The calculation
will then work just as if you were using floating point values the entire time. In
fact, if the compiler sees you are adding, subtracting, multiplying or dividing
a floating-point value with a whole number, it will automatically cast the
numbers for you. That means you can cut down the number of explicit casts
in your code:

float z = (float)x / y; The compiler will automatically
cast y to a float.

I've been
cast a float.

you are here 4   157

using multiple source files

There's a new program helping the waiters bus tables at the Head First Diner. The code
automatically totals a bill and adds sales tax to each item. See if you can figure out what needs
to go in each of the blanks.
Note: There are several data-types that could be used for this program, but what data-types
would you use for the kind of figures you'd expect?

#include <stdio.h>

 total = 0.0;

 count = 0;

 tax_percent = 6;

 add_with_tax(float f);

{

 tax_rate = 1 + tax_percent / 100 ;

 total = total + (f * tax_rate);

 count = count + 1;

 return total;

}

int main()

{

 val;

 printf("Price of item: ");

 while (scanf("%f", &val) == 1) {

 printf("Total so far: %.2f\n", add_with_tax(val));

 printf("Price of item: ");

 }

 printf("\nFinal total: %.2f\n", total);

 printf("Number of items: %i\n", count);

 return 0;

}

158   Chapter 4

split the check

There's a new program helping the waiters bus tables at the Head First Diner. The code
automatically totals a bill and adds sales tax to each item. See if you can figure out what needs
to go in each of the blanks.
Note: There are several data-types that could be used for this program, but what data-types
would you use for the kind of figures you'd expect?

#include <stdio.h>

 total = 0.0;

 count = 0;

 tax_percent = 6;

 add_with_tax(float f);

{

 tax_rate = 1 + tax_percent / 100 ;

 total = total + (f * tax_rate);

 count = count + 1;

 return total;

}

int main()

{

 val;

 printf("Price of item: ");

 while (scanf("%f", &val) == 1) {

 printf("Total so far: %.2f\n", add_with_tax(val));

 printf("Price of item: ");

 }

 printf("\nFinal total: %.2f\n", total);

 printf("Number of items: %i\n", count);

 return 0;

}

float

We need
a small
floating-point
number to
total the cash. short

There won't be many items on an
order so we'll choose a short.

short A small number like 6 won't need an int.

float We're returning a small cash value, so it'll be a float.

float
A float will
be OK for
this fraction.

.0
By adding ".0" we make the
calculation work as a float If
we left it as 100, it would
have returned a whole number.

float
Each price will easily fit in a float.

1 + tax_percent / 100;
would return the value 1
because 6/100 == 0 in
integer arithmetic.

you are here 4   159

using multiple source files

Data-type Sizes Up Close
Data-types are different sizes on different platforms. But how do you
find out how big an int is, or how many bytes a double takes up?
Fortunately the C Standard Library has a couple headers with the
details. This program will tell you about the sizes of ints and floats:

#include <stdio.h>

#include <limits.h>

#include <float.h>

int main()

{

 printf("The value of INT_MAX is %i\n", INT_MAX);

 printf("The value of INT_MIN is %i\n", INT_MIN);

 printf("An int takes %li bytes\n", sizeof(int));

 printf("The value of FLT_MAX is %f\n", FLT_MAX);

 printf("The value of FLT_MIN is %.50f\n", FLT_MIN);

 printf("A float takes %li bytes\n", sizeof(float));

 return 0;

}

When you compile and run this code you will see something like this:

Now the values you see on your particular machine will probably be
different. What if you want to know the details for chars or doubles? Or
longs? No problem. Just replace INT and FLT with CHAR (chars), DBL
(doubles), SHRT (shorts) or LNG (longs).

The value of INT_MAX is 2147483647
The value of INT_MIN is -2147483648
An int takes 4 bytes
The value of FLT_MAX is 340282346638528859811704183484516925440.000000
The value of FLT_MIN is 0.00000000000000000000000000000000000001175494350822
A float takes 4 bytes

File Edit Window Help HowBigIsBig

This contains the values for the integer typ
es like int and char.

This contains the values for floats and doubles.

This is the
highest value.

This is the
lowest value.

sizeof returns the number of
bytes a data type occupies.

160   Chapter 4

no dumb questions

Q: Why are data types different on
different operating systems? Wouldn't it
be less confusing to make them all the
same?

A: C uses different data types of
different operating systems and processors
because it allows it to make the most out of
the hardware.

Q: In what way?

A: When C was first created, most
machines were 8 bit. Now most machines
are 32 or 64 bit. Because C doesn't specify
the exact size of its data-types, it's been
able to adapt over time. And as newer
machines are created C will be able to
make the most of them as well.

Q: What does 8 bit? and 64 bit
actually mean?

A: Technically the bit size of a computer
can refer to several things - such as the
size of its CPU instructions, or the amount
of data the CPU can read from memory.
The bit-size is really the favored size of
numbers that the computer can deal with.

Q: So what does that have to do with
the size of ints and doubles?

A: If a computer is optimized best to
work with 32 bit numbers, it makes sense
if the basic data-type - the int - is set at 32
bits.

Q: I understand how whole numbers
like ints work, but how are floats
and numbers stored? How does the
computer represent a number with a
decimal point?

A: It's complicated. Most computers
used a standard published by the IEEE
(http://tinyurl.com/6defkv6).

Q: Do I really need to understand
how floating point numbers work?

A: No. The vast majority of developers
use floats and doubles without worrying
about the details.

Oh no... it's the out of work actors...
To you it's code,
to us it's art.

Aspiring actors.

Some people were never really cut out to be
programmers. It seems that while some aspiring
actors are filling in their time between roles, they're
making a little extra cash cutting code, and they
decided to spend some time freshening up the code in
the bill-totalling program.

By the time they had rejigged the code the actors
were much happier about the way everything looked...
but there was just a tiny problem.

The code doesn't compile any more.

you are here 4   161

using multiple source files

Let's see what's happened to the code
This is what the actors did to the code. You can see they really just
did a couple of things:

#include <stdio.h>

float total = 0.0;
short count = 0;
/* This is 6%. Which is a lot less than my agent takes...*/
short tax_percent = 6;

int main()
{
 /* Hey - I was up for a movie with Val Kilmer */
 float val;
 printf("Price of item: ");
 while (scanf("%f", &val) == 1) {
 printf("Total so far: %.2f\n", add_with_tax(val));
 printf("Price of item: ");
 }
 printf("\nFinal total: %.2f\n", total);
 printf("Number of items: %i\n", count);
 return 0;
}

float add_with_tax(float f)
{
 float tax_rate = 1 + tax_percent / 100.0;
 /* And what about the tip? Voice lessons ain't free */
 total = total + (f * tax_rate);
 count = count + 1;
 return total;
}

The code has had some comments added and they also changed
the order of the functions. There were no other changes made.

So really there shouldn't be a problem. The code should be good to
go, right? Well - everything was great right up until the point they
compiled the code...

162   Chapter 4

test drive

Test Drive
So if you open up the console and try to compile the program this happens:

> gcc totalling_broken.c -o totalling_broken && ./totalling_broken
totalling_broken.c: In function "main":
totalling_broken.c:14: warning: format "%.2f" expects type
"double", but argument 2 has type "int"
totalling_broken.c: At top level:
totalling_broken.c:23: error: conflicting types for "add_with_tax"
totalling_broken.c:14: error: previous implicit declaration of
"add_with_tax" was here

File Edit Window Help StickToActing

Bummer.

That's not good. What does that "error: conflicting types for
'add_with_tax'" mean? What is a previous implicit declaration? And
why does it think the line that prints out the current total is now an int?
Didn't we design that to be floating point?

The compiler will ignore the changes made to the comments, so that
shouldn't make any difference. That means the problem must be caused by
changing the order of the functions. But if the order is the problem
why doesn't the compiler just return a message saying something like:

Seriously - why doesn't the compiler give us a little help here?

To understand exactly what's happening here we need to get inside the
head of the compiler for a while and look at things from it's point of view.
You'll see that what's happening is that the compiler is actually trying to be
a little too helpful.

Dude - the order
of the functions
is busted. Fix it.

you are here 4   163

using multiple source files

Compilers don't like surprises
So what happens when the compiler sees this line of code?

printf("Total so far: %.2f\n", add_with_tax(val));

The compiler sees a call to a function it doesn't recognise.
Rather than complain about it, the compiler figures that it will find out more about the
function later in the source file. The compiler simply remembers to look out for the function
later on in the file. Unfortunately this is where the problem lies...

1

The compiler needs to know what data type the function will return.
Of course, the compiler can't know what the function will return just yet, so it makes an
assumption. The compiler assumes it will return an int.

2

Hey, here's a call to a function I've
never heard of. But I'll keep a note of it
for now and find out more later.

Meh. I bet the function
returns an int. Most do.

When it reaches the code for the actual function it returns a "conflicting
types for 'add_with_tax'" error.
This is because the compiler thinks it has two functions with the same name. One function is
the real one in the file. The other is the one that the compiler assumed would return an int.

3

A function called add_with_tax() that
returns a float??? But in my notes it says we've
already got one of these returning an int...?

The computer makes an assumption that the function returns an int, when in reality it
returns a float. If you were designing the C language, how would you fix the problem?

164   Chapter 4

correct order

Hello? I really don't care
how the C language solves the

problem. Just put the functions in
the correct freaking order!

We could just put the functions back in the correct
order and define the function before we call it in main.
Changing the order of the functions means that we can avoid the compiler
ever making any dangerous assumptions about the return types of
unknown functions. But if we force ourselves to always define functions in
a specific order, there are a couple of consequences:

Fixing function order is a pain
Say you've added a cool new function to your code that everyone
thinks in fantastic:

int do_whatever(){...}
float do_something_fantastic(int awesome_level) {...}
int do_stuff() {
 do_something_fantastic(11);
}

What happens if you then decide to call your program will be even better if
you add a call to the do_something_fantastic() function in the
existing do_whatever() code? You will have to move the function
earlier in the file. Most coders want to spend their time improving what
their code can do. It would be better if you didn't have to shuffle the order
of the code just to keep the compiler happy.

In some situations there is no correct order
OK, so this situation is kind of rare, but ocassionally you might write some
code that is mutually recursive:

float ping() {
 ...
 pong();
 ...
}

If you have two functions that call each other then one of them will
always be called in the file before it's defined.

For both of those reasons it's really useful to be able to define functions in
whatever order is easiest at the time. But how?

There is no way
to reorder these
functions.

float pong() {
 ...
 ping();
 ...
}

Over to
you, Cecil!

you are here 4   165

using multiple source files

Split the declaration from the definition
Remember how the compiler made a note to itself about the function
it was expecting to find later in the file? We can avoid the compiler
making assumptions by explicitly telling it what functions it
should expect. When we tell the compiler about a function it's called
a function declaration:

float add_with_tax();
A declaration has no body c

ode.

It just ends with a ;
The declaration tells the compiler what return value to expect.

The declaration is just a function signature - it's a record of what
the function will be called, what kind of parameters it will accept and
what type of data it will return.

Once you've declared a function, the compiler won't need to make any
assumptions so it won't matter if you define the the function after you
call it.

So if you have a whole bunch of functions in your code and you don't
want to worry about what order they appear in the file, you can put a
list of function declarations at the start of your C program code:

float do_something_fantastic();

double awesomeness_2_dot_0();

int stinky_pete();

char make_maguerita(int count);

But even better than that, C allows you to take that whole set of
declarations out of your code and put them in a header file. We've
already used header files to include code from the C Standard Library:

#include <stdio.h>
This line will include the
contents of the header
file called stdio.h.

Let's go see how we can create our own header files.

Declarations
don't have a
body.

166   Chapter 4

add a header

Creating your first header file
To create a header you just need to do two things:

Create a new file with a .h extension.
If you are writing a program called totaller.c, then create a file
called totaller.h and write your declarations inside it:

1

float add_with_tax(float f);

totaller.hYou won't need to include the main() function in the header file because
nothing else will need to call it.

Include your header file in your main program.
At the top of your program you should add an extra include line:

2

#include <stdio.h>

#include "totaller.h"

...

totaller.c

Add this include in with your other include lines.

When you write the name of the header file, make sure you
surround it with double-quotes rather than angle brackets. Why
the difference? When the compiler sees an include line with
angle brackets it assumes it will find the header file somewhere
off in the directories where the library code lives. But our
header file is in the same directory as our .c file. By wrapping
the header file name in quotes we are telling the compiler to look
for a local file.

When the compiler reads the #include in the code it will read
the contents of the header file, just as if they had been typed
into the code.

Separating the declarations into a separate header file keeps your
main code a little shorter, and it also has another big advantage
that we'll find out about in a few pages.

For now, let's see if the header file fixed the mess.

Local header files can also include
directory names, but you will normally put
them in the same directory as the C file.

#include is a
precompiler
instruction.

you are here 4   167

using multiple source files

Test Drive
Now when we compile the code, this happens:

> gcc totaller.c -o totaller
File Edit Window Help UseHeaders

The compiler reads the function declarations from the
header file, which means it doesn't have to make any guesses
about the return type of the function. It doesn't matter what
order the functions are in.

Just to check that everything is OK, we can run the
generated program to see if it works the same as before.

> ./totalling_fixed
Price of item: 1.23
Total so far: 1.30
Price of item: 4.57
Total so far: 6.15
Price of item: 11.92
Total so far: 18.78
Price of item: ^D
Final total: 18.78
Number of items: 3

File Edit Window Help UseHeaders

We'll press control-D here to stop
the program asking for more prices.

No error
messages
this time.

168   Chapter 4

be the compiler

BE the Compiler
Look at the program below. Part of the
program is missing. Your job is to play
like you're the compiler and say what

you would do if each of the
candidate code fragments
on the right were slotted
into the missing space.

#include <stdio.h>

 printf("A day on Mercury is %f hours\n", day);

 return 0;

}

float mercury_day_in_earth_days()

{

 return 58.65;

}

int hours_in_an_earth_day()

{

 return 24;

}

Candidate code goes here.

you are here 4   169

using multiple source files

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

Here are the code fragments.

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 int length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

Tick the boxes that
you think are correct.

170   Chapter 4

be the compiler

BE the Compiler Solution
Look at the program below. Part of the
program is missing. Your job is to play
like you're the compiler and say what

you would do if each of the
candidate code fragments
on the right were slotted
into the missing space.

#include <stdio.h>

 printf("A day on Mercury is %f hours\n", day);

 return 0;

}

float mercury_day_in_earth_days()

{

 return 58.65;

}

int hours_in_an_earth_day()

{

 return 24;

}

you are here 4   171

using multiple source files

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

int main()

{

 float length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

float mercury_day_in_earth_days();

int hours_in_an_earth_day();

int main()

{

 int length_of_day = mercury_day_in_earth_days();

 int hours = hours_in_an_earth_day();

 float day = length_of_day * hours;

You can compile the code.

You should display a warning.

The program will work.

There will be a warning beause we haven't
declared the hours_in_an_earth_day()
before calling it. The program will still
work because it will guess the function
returns an int.

The program will compile without
warnings, but the program won't
work because there will be a
rounding problem.

The length_of_day variable should be a float.

The program won't compile because we're calling a float function without declaring it first.

172   Chapter 4

no dumb questions

Q: So I don't need to have
declarations for int functions?

A: Not necessarily - unless you are
sharing code. We'll see more about this
soon.

Q: I'm confused. You talk about the
compiler precompiling? Why does the
compiler do that?

A: Strictly speaking the compiler just
does the compilation step - it converts the
C source code into assembly code. But in a
looser sense, all of the stages that convert
the C source code into the final executable
are normally called compilation, and the
gcc tool allows you to control those stages.
The gcc tool does precompilation and
compilation.

Q: What is the precompiler?

A: Precompilation is the first stage i
coverting the raw C source code into a
working executable. Precompilation creates
a modified version of the source just before
the proper compilation begins. In our code
the precompilation step read the contents
of the header file into the main file.

Q: Does the preompiler create an
actual file?

A: No - compilers normally just use
pipes to sending the stuff through the
phases of the compiler to make things more
efficient.

Q: Why do some headers have
quotes and other have angle brackets?

A: Quotes mean to simply look for a
file using a relative path. So if you just
include the name of a file, without including
a directory name, the compiler will look in
the current directory. If the thing uses angle
brackets it will search for the file along a
path of directories.

Q: What directories will the compiler
search when it is looking for header
files?

A: The gcc compiler knows where the
standard headers are stored. On a Unix-
style operating system, the header files are
normally in places like /usr/local/include, /
usr/include and a few others.

Q: So that's how it works for
standard headers like stdio.h?

A: Yes. You can read through the stdio.h
on a Unix-style machine in /usr/include/
stdio.h. If you have the MingW compiler on
Windows, it will probably be in C:\MingW\
include\stdio.h.

Q: Can I create my own libraries?

A: Yes - we'll show you how to do that
later in the book.

you are here 4   173

using multiple source files

�� If the compiler finds a call to a
function it's not heard of, it will
assume the function returns an int.

�� So if you try to call a function before
you define it, there can be problems.

�� Function declarations tell the
compiler what your functions will look
like before you define them.

�� If function declarations appear at the
top of your source code, the compiler
won't get confused about return
types.

�� Function declarations are often put
into header files.

�� You can tell the compiler to read
the contents of a header file using
#include

�� The compiler will treat included code
the same as code that is typed into
the source file.

C is a very small language. Here is the entire set
of reserved words (in no useful order).

Every C program you ever see will break into just
these words and a few symbols. If you use these
for names, the compiler will be very, very upset.

This Table's Reserved...

auto if break

int case long

char register continue

return default short

do sizeof double

static else struct

entry switch extern

typedef float union

for unsigned goto

while enum void

const signed volatile

174   Chapter 4

code sharing

If you have common features...
Chances are when you begin to write several programs in C, you will
find that there are some functions and features that you will want to
reuse from other programs. For example, look at the specs of the two
programs on the right.

XOR encryption is a very simple way of disguising a piece of text by
XOR-ing each character with some value. It's not very secure, but it's
very easy to do. And the same code that can encrypt text, can also be
used to decrypt it. Here's the code to encrypt some text:

Imagine you have a set of
functions that you want to
share between programs.
If you had created the C
programming language, how
would you allow code to be
shared?

file_hider

Read the contents
of a file and create
an encrypted version
using XOR encryption.

message_hider

Read a series of strings

from the standard

input and display and

encrypted version on

the standard output

using XOR encryption.

...it's good to share code
Clearly both of those programs are going to need to use
the same encrypt() function. So you could just copy
the code from one program to the other, right? That's
not seem so bad if there's just a small amount of code to
copy, but what if there's a really large amount of code?
Or what if the way the encrypt() function needs
to change in the future? If there are two copies of the
encrypt function, you will have to change it in more than
one place.

In order for your code to scale properly, you really need
to find some way to reuse common pieces of code.
Some way of taking a set of functions and making them
available in a bunch of different programs.

How would you do that?

void encrypt(char* message)

{

 char c;

 while (*message) {

 *message = *message ^ 17;

 message++;

 }

}

void means we don't return anything.
We pass a pointer to an
array into the function.

We'll loop through the
array and update each
character with an
encrypted version.

This means
we'll XOR each
character with
the number 17.

Doing math with a character? We can
because char is a numeric datatype.

you are here 4   175

using multiple source files

You can split the code into separate files
If you have a set of code that you want to share amongst several files, it
makes a lot of sense to put that shared code into a separate .c file. If the
compiler can somehow include the shared code when it's compiling the
program, you can use the same code in multiple applications at once. So
if you ever need to change the shared code, you only have to do it in one
place.

If we want to use a separate .c file for the shared code that gives
us a problem. So far we have only ever created programs from single
.c source files. So if we had a C program called blitz_hack we
would have created it from a single source code file called
blitz_hack.c.

But now, we want some way to give the compiler a set of source
code files and say "Go make a program from those". How do we
do that? What syntax do we use with the gcc compiler? And more
importantly, what does it mean for a compiler to create a single
executable program from several files? How would it work? How
would it stitch them together?

In order to understand how the C compiler can
create a single program from multiple files, let's
take a look at how compilation works...

This is the
shared code.

The compiler will compile the shared code into each program.

We need to find a way
of telling the compiler to
create the program from
multiple source files.

Read a file,
rewrite a file.

Encrypt
text.

Read standard
input, display text.

file_hider message_hider

176   Chapter 4

how compilation works

Compilation behind the scenes
In order to understand how a compiler can compile several
source files into a single program, we'll need to pull back the
curtain and see how compilation really works.

Hmmmm.... so I need to
compile this source files
into a program? Let's see
what I can cook up...

Precompilation: fix the source.
The first thing the compiler needs to do is fix the source. It needs to add
in any extra header files it's been told about using the #include directive.
It might also need to expand or skip over some sections of the program.
Once it's done, the source code will be ready for the actual compilation.

1

First I'll just add
some extra ingredients
into the source.

"directive" is
just a fancy
word for
"command". It can do this with command like #define and #ifdef - we'll see how to use them later in the book.

Compilation: translate into assembly.
The C programming language probably seems pretty low-level, but
the truth is it's not low-level enough for the computer to understand. The
computer only really understands very low-level machine code
instructions, and the first step to generate machine code, is to convert
the C source code into assembly language symbols like this:

2

Looks pretty obscure? Assembly language describes the individual
instructions the Central Processor will have to follow when running the
program. The C compiler has a whole set of recipes for each of the
different parts of the C language. These recipes will tell the compiler how
to convert an if statement or a function call into a sequence of assembly
language instructions. But even assembly isn't low-level enough for the
computer. That's why it needs....

movq	 -24(%rbp), %rax

movzbl	(%rax), %eax

movl	 %eax, %edx

So for this "if"
statement I need
to begin by adding
onto the stack...

you are here 4   177

using multiple source files

Assembly: generate the object code.
The compiler will need to assemble the symbol codes into machine or
object code. This is the actual binary code that will be executed by
the circuits inside the CPU.

3

10010101 00100101 11010101 01011100
This is a really
dirty joke in
machine code.

So are we all done? After all, we've taken the original C source code
and converted it into the 1s and 0s that the computer's circuits need.
But no - there's still one more step. If we give the computer several files
to compile for a program, the compiler will generate a piece of object
code for each source file. But in order for these separate object files to
form a single executable program, one more thing has to occur...

Time to bake that
assembly into
something edible.

Linking: put it all together.
Once we have all of the separate pieces of object code, we need
to piece them together like jigsaw pieces to form the executable
program. The compiler will connect the code in one piece of object
code that calls a function in another piece of object code. Linking will
also make sure that the program is able to call library code properly.
Finally, the program will written out into the executable program file
using a format that is supported by the operating system. The file
format is important because it will allow the operating system to load
the program into memory and make it run.

4

So how do we actually tell gcc that we want to make one
executable program from several separate source files?

Finally I need to put
everything together
for the final result...

178   Chapter 4

sharing variables

The shared code will need its own header file
If we are going to share the encrypt.c code between
programs, we need some way to tell those programs
about the encrypt code. We do that with a header file.

#include "encrypt.h"

void encrypt(char* message)
{
 char c;
 while (*message) {
 *message = *message ^ 17;
 message++;
 }
}

encrypt.c

We'll include the header
inside encrypt.c

void encrypt(char* message);

encrypt.h

We need to include encrypt.h in our program
We're not using a header file here so that we can re-order the
functions. We're using it so we can tell other programs
about the encrypt() function:

#include <stdio.h>
#include "encrypt.h"

int main()
{
 char msg[80];
 while (fgets(msg, 79, stdin)) {
 encrypt(msg);
 printf("%s", msg);
 }
}

message_hider.c

We'll include encrypt.h so that
the program has the declaration
of the encrypt() function.

Having encrypt.h inside the main program will mean the
compiler will know enough about encrypt() function to
compile the code. At the linking stage, the compiler will be able to
connect the call to encrypt(msg) in message_hider.c to
the actual encrypt() function in encrypt.h.

Finally, to compile everything together we just need to pass the
source files to gcc:

gcc message_hider.c encrypt.c -o message_hider

Sharing Variables

We've shown you how to share
functions between different files. But
what if you want to share variables?
Source code files normally contain
their own separate variables to
prevent a variable in one file affecting
a variable in another file with the
same name. But if you genuinely want
to share variables, you should declare
them in your header file and prefix
them with the keyword extern:

extern int passcode;

you are here 4   179

using multiple source files

Test Drive
Let's see what happens when we compile our message_hider
program:

> gcc message_hider.c encrypt.c -o message_hider
> ./message_hider
I am a secret message
X1p|1p1btrcte1|tbbpvt
> ./message_hider < encrypt.h
g~xu1t�rchae9rypc;1|tbbpvt8*

File Edit Window Help Shhh...

We need to compile the code
with both source files.

When we run the program we can enter text and see the encrypted version.
We can even pass it the
contents of the encrypt.h
file to encrypt it.

The message_hider program is using the encrypt() function from encrypt.c.

The program works. Now we have the encrypt()
function in a separate file, we can use it in any program
we like. If we ever change the encrypt() function to be
something a little more secure, we will only need to amend
the encrypt.c file.

�� You can share code by putting it into
a separate C file.

�� You need to put the function
declarations in a separate .h header
file.

�� Include the header file in every C file
that needs to use the shared code.

�� List all of the C files needed in the
compiler command.

Write your own program
using the encrypt()
function. Remember -
you can call the same
function to decrypt text.

Go Off Piste

command_module.c

engine.c

inst_unit.c
ullage_motor.c

reaction_control.c

180   Chapter #

Man! Every time I make a
simple change in one file it
takes an age to recompile! And
I'm working to a schedule...

you are here 4   181

using multiple source files

command_module.c

It's not Rocket Science... or is it?
Breaking your program out into separate source files not only means
that you can share code between different programs - it also means you
can start to create really large programs. Why? Well because you can
start to break your program down into smaller self-contained pieces
of code. Rather than being forced to have one huge source file, you can
have lots of simpler files that are easier to understand, maintain and test.

So on the plus side, you can start to create really large programs. The
downside? The downside is.... you can start to create really large
programs. C compilers are really efficient pieces of software. They take
your software through some very complex transformations. They can
modify your source, link hundreds of files together without blowing
your memory, and they can even optimize the code you wrote, along
the way. And even though they do all that, they still manage to run
quickly.

But if you create programs that use more than a few files, the time it
takes to compile the code starts to become important. Let's say it take
a minute to compile a large project. That might not sound like a lot of
time, but it's more than long enough to break your train of thought. If
you try out a change in a single line of code, you want to see the result
of that change as quickly as possible. If you have to wait a full minute
to see the result of every change, that will really start to slow you down.

If you change even one line in one file, it can take the compiler a long time to recompile all the source files.

Think carefully. Even a simple change might mean running a large, slow compile to
see the result. Given what you know about the compilation process, how could you
speed up the time to recompile the program?

launch
pitch_motor.c

launch.c
retro.c

engine.c

inst_unit.c

Compiler

reaction_control.c

182   Chapter 4

save copies

Don't recompile every file
If you've just made a change to one or two of your source code files, it's
a waste to recompile every source file for your program. Think what
happens when you issue a command like this:

gcc reaction_control.c pitch_motor.c ... engine.c -o launch

We've skipped a few filenames here.

What will the compiler do? It will run the pre-compiler, compiler and
assembler for each source code file. Even the ones that haven't change. And if
the source code hasn't changed, the object code that's generated for that
file won't change either. So if the compiler is generating the object code
for every file, every time, what do we need to do?

If we change a single file we will have to recreate the object code file from
it, but we won't need to create the object code for any other file. Then we
can pass all the object code files to linker and create a new version of the
program.

So how do we tell gcc to save the object code in a
file? And how do we then get the compiler to link the
object files together?

You can save copies of the compiled code
If we tell the compiler to save the object code it generates into a file, then
it shouldn't need to recreate it unless the source code changes. If a file
does change, we can recreate the object code for that one file and then
pass the whole set of object files to the compiler so they can be linked.

Object
code file

C source
file

Compiler

Object
code file

C source
file

Compiler

Object
code file

C source
file

Compiler

Executable

Linker

If this source
file changes,
it's the only
one we need
to recompile.

The compiler will update
the object code that's
stored in a file.

We will still need to run the linker, but most of the files will still be the same.

you are here 4   183

using multiple source files

First you compile the source into object files
We want object code for each of source files, and we can do
that by typing this command:

gcc -c *.c
The operating system will replace
*.c with all the C filenames. This will create object

code for every file.
The *.c will match every C file in the current directory and the
-c will tell the compiler that you want to create an object file for
each source file, but you don't want to link them together into a
full executable program.

gcc -c will compile the
code but won't link it.

Then you link them together
Now we have a set of object files, we can link them together
with a simple compile command. But instead of giving the
compiler the names of the C source files, we tell it the names
of the object files:

gcc *.o -o launchThis is similar to the
compile commands
we've used before.

Instead of C source files, we
list the object files.

This will match all the object files in the directory.
The compiler is smart enough to recognize the files as
object files, rather than source files, so it will skip most of
the compilation steps and just link them together into an
executable program called launch.

OK - so now we have a compiled program just like before. But
as well as that we have a set of object files that are already to
be linked together if we need them again. So if we change just
one of the files, we'll only need to recompile that single file and
then relink the program:

gcc -c thruster.c

gcc *.o -o launch

This is a file
that's changed.

This will recreate the thruster.o file.

This will link everything together.
Even though we have to type two commands, we're saving a lot
of time:

			 Before		 After

Compile time:	 2 mins 30 secs	 2 secs

 Link time:	 	 6 secs		 6 secs

Source files.

Object files.

Before we were compiling every file.

Now we're only
compiling the
changed file.

The link time is
the same. The build is 95% faster.

gcc -o

gcc -c

Executable.

184   Chapter 4

file update

Here is some of the code that's used to control the engine management system on the craft.
There's a time stamp on each file. Which files do you think need to be recreated to make the
ems executable up to date? Circle the files you think need to be updated.

thruster.c
11:43

turbo.c
12:15

graticule.c
14:52

servo.c
13:47

thruster.o
11:48

turbo.o
12:22

graticule.o
14:25

servo.o
13:46

ems
14:26

you are here 4   185

using multiple source files

And in the galley, they need to check their code's up to date as well. Look at the times against the files. Which of these
files need to be updated?

microwave.c
15:42

popcorn.c
17:05

juicer.c
16:41

microwave.o
18:02

popcorn.o
17:07

juicer.o
16:43

galley
17:09

186   Chapter 4

files updated

Here is some of the code that's used to control the engine management system on the craft.
There's a time stamp on each file. Which files do you think need to be recreated to make the
ems executable up to date? Circle the files you think need to be updated.

thruster.c
11:43

turbo.c
12:15

graticule.c
14:52

servo.c
13:47

thruster.o
11:48

turbo.o
12:22

graticule.o
14:25

servo.o
13:46

ems
14:26

graticule.o needs to be
recompiled because it's
older than the latest
version of its source.

servo.o needs to be
recompiled because it's
older than its source.

Because we've changed graticule.o
and servo.o, we'll need to relink
the ems executable as well.

you are here 4   187

using multiple source files

And in the galley, they need to check their code's up to date as well. Look at the times against the files. Which of these
files need to be updated?

microwave.c
15:42

popcorn.c
17:05

juicer.c
16:41

microwave.o
18:02

popcorn.o
17:07

juicer.o
16:43

galley
17:09

None of the *.o files
needs to be recompiled.
They are all newer
than their source files.

The galley executable needs to
be relinked because it's older
than the microwave.o file.

188   Chapter 4

need automation

It's hard to keep track of the files

It's true - partial compiles are faster, but
you have to think more carefully to make
sure you recompile everything you need.
If you are working on just one source file, things will be
pretty simple. But if you've changed a few files, it's pretty
easy to forget to recompile some of them. That means the
newly compiled program won't pick up all the changes
you made. Now of course, when you come to ship the
final program, you can always make sure you can do a full
recompile of every file, but you don't want to do that while
you're still developing the code.

Even though it's a fairly mechanical process to look for
files that need to be compiled, if you do it manually, it will
be pretty easy to miss some changes.

Is there something we can use to automate the process?

I thought the whole point of saving time
was so I didn't have to get distracted.
Now the compile is faster, but I have to
think a lot harder about how to compile
my code. Where's the sense in that?

you are here 4   189

using multiple source files

Wouldn't it be dreamy if there was a
tool that could automatically recompile
just the source that's changed? But I
know it's just a fantasy…

190   Chapter 4

make it automatic

Automate your builds with the make tool
You can compile your applications really quickly in gcc, so long as
you keep track of which files have changed. That's a tricky thing to
do, but it's also pretty straightforward to automate. Imagine you have
a file that is generated from some other file. Lets say it's an object file
that is compiled from a source file:

If the thruster.c
file is newer, you
need to recompile.

If the thruster.o
file is newer, you
don't need to
recompile.

How do you tell if the thruster.o needs to be recompiled? You
just look at the timestamps of the two files. If the thruster.o file is
older than the thruster.c file, then the thruster.o file needs
to be recreated. Otherwise it's up to date.

That's a pretty simple rule. And if you have a simple rule for
something, then don't think about it, automate it...

Make is a tool that can run the compile command for you. The
make tool will check the timestamps of the source files and the
generated files and then it will only recompile the files if things have
gotten out of date.

But before can do all these things, we need to tell it about our source
code. It needs to know the details of which files depend upon which
files. And it also needs to be told exactly how to we want to build our
code.

What does make need to know?
Every file that make compiles is called a target. Strictly speaking,
make isn't limited to compiling files. A target is any file that is
generated from some other files. So a target might be a zip archive that
is generated from the set of files that need to be compressed.

For every target, make needs to be told two things:

Together the dependencies and the recipe form a rule. A rule tells
make all it need to know to create the generate target file.

The dependencies.
Which files the target is going to be generated from.

¥

The recipe.
The set of instructions it needs to run to generate the file.

¥

thruster.c thruster.o

Hmm... This file's OK.
And this one. And this one.
And... ah - this one's out of
date. I'd better send that
to the compiler.

you are here 4   191

using multiple source files

Let's see how make works
Let's say you want to compile thruster.c into some object
code in thruster.o. What are the dependencies and what's the
recipe?

The thruster.o file the target, because it's the file we want
to generate. thruster.c is a dependency, because it's a file
the compiler will need in order to create thruster.o. And
what will the recipe be? That's the compile command to convert
thruster.c into thruster.o.

gcc -c thruster.c This is the rule for creating thruster.o.

Make sense? If we tell the make tool about the dependencies
and the recipe, we can leave it make to decide when it needs to
recompile thruster.o.

But we can go further than that. Once we the thruster.o file
we are going to use it to create the launch program. That means
the launch file can also be set up as a target - because it's a file we
want to generate. The dependency files for launch are all of the
.o object files. The recipe is this command:

gcc *.o -o launch

Once make has been given the details of all of the dependencies
and rules, all we have to do is tell it create the launch file. Make
will work out the details.

But how do we tell make about the
dependencies and recipes? Let's find out.

thruster.c thruster.o

launch

launch.o thruster.o

launch.c launch.h thruster.h thruster.c

So I've got to compile the
launch program? Hmm...
First I'll need to recompile
thruster.o because it's out
of date, then I just need
to relink launch.

192   Chapter 4

make a makefile

Tell make about your code with a makefile
All of the details about the targets, dependencies and recipes
need to be stored in a file called either makefile or
Makefile. To see how it works, imagine you have a pair
of source files that together create the launch program:

The launch program is made by linking the launch.o
and thruster.o files. Those files are compiled from their
matching C and header files, but the launch.o file also
depends on the thruster.h file because it contains code
that will need to call a function in the thruster code.

This is how you'd describe that build in a makefile:

launch.o: launch.c launch.h thruster.h

	 gcc -c launch.c

thruster.o: thruster.h thruster.c

	 gcc -c thruster.c

launch: launch.o thruster.o

	 gcc launch.o thruster.o -o launch

	 All the
recipe
lines
MUST
begin

with a TAB
character.

If you just try to
indent the recipe
lines with spaces,
the build won't work.

There are 3 RULES.

This is a target.
A target is a file that is
going to be generated.

This is a recipe for
creating thruster.o.

launch.o depends on these 3 files.

The recipes MUST begin with a TAB character.

launch

launch.o thruster.o

launch.c launch.h thruster.h thruster.c

The launch program is made from the launch.o and thruster.o files.

thruster.o is compiled from
thruster.h and thruster.c. launch.o is compiled from launch.c and

launch.h - and ALSO from thruster.h.

you are here 4   193

using multiple source files

Test Drive
If you save this into a text file called Makefile then open up a
console and type the following:

> make launch
gcc -c launch.c
gcc -c thruster.c
gcc launch.o thruster.o -o launch

File Edit Window Help MakeItSoWe are telling make to create the launch file.
make first needs to create
a launch.o with this line.
make then needs to create
thruster.o with this line.

Finally make links the object files
to create the launch program.

You can see that make was able to work out the sequence of
commands required to create the launch program. But what
happens if we make a change to the thruster.c file and then
run make again?

> make launch
gcc -c thruster.c
gcc launch.o thruster.o -o launch

File Edit Window Help MakeItSomake no longer needs to compile launch.c.

launch.o is already up to date.

make is able to skip creating a new version of launch.o. Instead
it just compiles thruster.o and then relinks the program.

194   Chapter 4

no dumb questions

Q: Is make just like ANT?

A: It's probably better to say that build tools like ANT and
rake are like make. Make was one of the earliest tools used to
automatically build programs from source code.

Q: This seems like a lot of work just to compile source code.
Is it really that useful?

A: Yes - make is amazingly useful. For small projects make
might not appear to save you that much time, but once you have
more than a handful of files, compiling and linking code together
can become very painful.

Q: If I write a makefile for a Windows machine, will it work
on a Mac? Or a Linux machine?

A: Because make files calls commands in the underlying
operating system, sometimes make files don't work on different
operating systems.

Q: Can I use make for things other than compiling code?

A: Yes. Make is most commonly used to compile code. But it can
also be used as a command line installer. Or a source control tool.
In fact - you can use make for almost any task that you can perform
on the command line.

Tales from
the Crypt

Why indent with tabs?

It's easy to indent recipes with
spaces instead of TABs. So
why does make insist on using
TABs? This is a quote from
make's creator Stuart Feldman:

"Why the tab in column 1? ... It
worked, it stayed. And then a
few weeks later I had a user
population of about a dozen,
most of them friends, and I
didn't want to screw up my
embedded base. The rest, sadly,
is history."

Geek Bits

make takes away a lot of the pain of compiling files.
But if you find that even make is not automatic
enough, take a look at a tool called autoconf:

 http://www.gnu.org/software/autoconf/

Autoconf is used to generate makefiles. C
programmers often create tools to automate the
creation of software. And increasing number of
them are available on the GNU web site.

you are here 4   195

using multiple source files

oggswing:

swing.ogg:

Make Magnets
Hey baby, if you don't groove to the latest tunes, then you'll love the program the
guys in the Head First Lounge just wrote! oggswing is a program that reads an Ogg
Vorbis music file and creates a Swing version. Sweet! See if you can complete the
makefile that compiles oggswing and then uses it to convert a .ogg file:

[SPACES]

oggswing

oggswing whitennerd
y.ogg swing.ogg

oggswing.h

oggswing.c

gcc oggswing.c -o oggswing

whitennerdy.ogg

[TAB]

[TAB][SPACES]

This converts
whitennerdy.ogg
to swing.ogg.

196   Chapter 4

make magnets solution

oggswing:

swing.ogg:

Make Magnets Solution
Hey baby, if you don't groove to the latest tunes, then you'll love the program the
guys in the Head First Lounge just wrote! oggswing is a program that reads an Ogg
Vorbis music file and creates a Swing version. Sweet! See if you can complete the
makefile that compiles oggswing and then uses it to convert a .ogg file:

[SPACES]

oggswing

oggswing whitennerd
y.ogg swing.ogg

oggswing.hoggswing.c

gcc oggswing.c -o oggswing

whitennerdy.ogg

[TAB]

[TAB]

[SPACES]

Geek Bits

The make tool can do far, far more than we have space to discuss
here. To find out more about make and what it can do for you,
visit the GNU Make Manual at:

http://tinyurl.com/yczmjx

Liftoff!
If you have a really slow build, then make will really speed
things up. Most developers are so used to building their code
with make that they even use it for small programs. make is
like having a really careful developer sitting alongside you. If
you have a large amount of code, make will always take care
to build just the code you need at just the time you need it.

And sometimes getting things done in time
is important...

you are here 4   197

chapter title here

�� It can take a long time to
compile a large number of
files.

�� You can speed up
compilation time by storing
object code in *.o files.

�� The gcc can compile
programs from object files as
well as source files.

�� The make tool can be used
to automate your builds.

�� make knows about the
dependencies between files
so it can compile just the files
that change.

�� make needs to be told about
your build with a Makefile.

�� Be careful formatting your
Makefile - don't forget to
indent lines with TABs
instead of spaces.

198   Chapter 4

c toolbox

Your C Toolbox

You’ve got Chapter 4 under
your belt and now you’ve

added data types and header
files to your tool box. For a

complete list of tooltips in the book,
see Appendix X.CH

AP
T

ER
 4

chars are
numbers

Use shorts
for small
whole
numbers

Use longs
for really big
whole numbers

Use ints for
most whole
numbers

Use floats for
most floating
points

Use doubles
for really
precise
floating points Split function

declarations
from
definitions Put

declarations
in a header
file #include

"" for local
headers

#include <>
for library
headers

Save object
code into
files to speed
up your builds

Use make to
manage your
builds

this is a new chapter   199

struct tea =
{"tealeaves", "milk",

"sugar", "water", "gin"};

structs, unions, and bitfields5

Roll your own structures

Most things in life are more complex than a simple number.�
So far we've looked at the basic data-types of the C language, but what if you want to go

beyond numbers and pieces of text, and model things in the real world? Structs allow

you to model real-world complexities by writing your own structures. We'll show you how

to combine the basic data-types into structs, and even handle life's uncertainties with

unions. And if you're after a simple yes or no, bitfields may be just what you need.

200   Chapter 5

page goal header

Sometimes you need to hand around a lot data

/* Print out the catalog entry */
void catalog(const char* name, const char* species, int teeth, int age)
{
 printf("%s is a %s with %i teeth. He is %i\n",
 name, species, teeth, age);
}

/* Print the label for the tank */
void label(const char* name, const char* species, int teeth, int age)
{
 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",
 name, species, teeth, age);
}

"const char*" just means we're
going to pass literal strings.

Now that's not really so bad is it? But even though you're just
passing 4 pieces of data, the code's starting to look a little messy:

int main()
{
 catalog("Snappy", "Piranha", 69, 4);
 label("Snappy", "Piranha", 69, 4);
 return 0;
}

So how do you get around this problem? What can you do to
avoid passing around lots and lots of data if you're really only
using it to describe a single thing?

We are
passing the
same 4
pieces of
data twice. There's only one fish, but we're

passing four pieces of data.

That's me!

You've seen that C can handle a lot of different types of data:
small numbers and large numbers, floating point numbers,
characters and text. But quite often when you are recording
data about something in the real world, you'll find that you need
to use more than one piece of data. Take a look at this example.
Here we have two functions that both need the same set of data
because they are both dealing with the same real world thing:

Both
of these
functions
take the
same set of
parameters.

H e ad Fir st

A q u a r i u m

you are here 4   201

structs, unions, and bitfields

Cubicle conversation

Joe: Sure - it's four pieces of data now, but what if we change the
system to record another piece of data for the fish?

Frank: That's only one more parameter.

Jill: Yes - it's only one piece of data, but we'll have to add that to
every function that needs data about a fish.

Joe: Yeah - for a big system, that might be hundreds of functions.
And all because we add one more piece of data.

Frank: That's a good point. But how do we get round it?

Joe: Easy - we just group the data into a single thing. Something
like an array.

Jill: I'm not sure that would work. Arrays normally store a list of
data of the same type.

Joe: Good point.

Frank: I see. We're recording strings and ints. Yeah - we can't
put those into the same array.

Jill: I don't think we can.

Joe: But come on - there must be some way of doing this in C.
Let's think about what we need.

Frank: OK - we want something that let's use refer to a whole
set of data of different types all at once, like it was a single piece
of data.

Jill: I don't think we've seen anything like that yet have we?

I don't really see the
problem. It's only
four pieces of data.

Frank
Jill Joe

What we need is something that will let us record a set
of different pieces of data into one single piece of data.

202   Chapter 5

page goal header

Create your own structured data types with a struct

struct fish {

 const char* name;

 const char* species;

 int teeth;

 int age;

};

This will create a new custom data-type: it's a data type that is
made up of a collection of other pieces of data. In fact, it's a
little bit like an array, except:

It's fixed length.¥
The pieces of data inside the struct are given names¥

But once you've defined what your new struct looks like, how do you
create pieces of data that use it? Well it's very similar to creating a new
array. You just need to make sure the individual pieces of data are in the
order that they are defined in the struct:

struct fish snappy = {"Snappy", "Piranha", 69, 4};
"struct fish" is the data-type.

"snappy" is the variable name. This is the name.

This is the species. This is the number of teeth.

This is Snappy's age.

If you had a set of data that you need to bundle together into a
single thing, then you can use a struct. The word struct is
short for Structured Data Type. A structured data type will
let us take all of those different pieces of data into the code and
wrap them up into one large new data-type, like this:

Name: Snappy
Species: Piranha
Teeth: 69
Age: 4 years

Q: Hey - wait a minute. What's that
const char thing again?

A: const char* is used for strings that
you don't want to change. That means it's
often used to record literal strings.

Q: OK. So does this struct store the
string?

A: In this case - no. The struct here just
stores a pointer to a string. That means it's
just recording an address and the string
lives somewhere else in memory.

Q: But you can store the whole string
in there if you want?

A: Yes - if you define a char array in the
string, like char name[20];.

you are here 4   203

structs, unions, and bitfields

Just give them the fish
Now instead of having to pass around a whole collection of
individual pieces of data to the functions, you can just pass our
new custom piece of data:

/* Print out the catalog entry */

void catalog(struct fish f)

{

 ...

}

/* Print the label for the tank */

void label(struct fish f)

{

 ...

}

Looks a lot simpler doesn't it? Not only does it mean the functions
now only need a single piece of data, but the code that calls them is
easier to read:

struct fish snappy = {"Snappy", "Piranha", 69, 4};

catalog(snappy);

label(snappy);

So that's how you can define your custom data type, but how do
you use it? How will our functions be able to read the individual
pieces of data stored inside the struct?

204   Chapter 5

page goal header

You can read a struct's fields with the "." operator
Because a struct's a little like an array, you might think you can
read its fields like an array:

struct fish snappy = {"Snappy", "piranha", 69, 4};

printf("Name = %s\n", snappy[0]); If snappy was a pointer to an array, you
would access the first field like this.

OK - now we know a few things about using structs,
let's see if we can go back and update that code...

> gcc fish.c -o fish
fish.c: In function ‘main’:
fish.c:12: error: subscripted value is neither array nor pointer
>

File Edit Window Help Fish

But you can't. Even though a struct stores fields like an array, the
only way to access them is by name. You can do this using the "."
operator. If you've used another language like JavaScript or Ruby,
this will look familiar:

struct fish snappy = {"Snappy", "piranha", 69, 4};

printf("Name = %s\n", snappy.name);

> gcc fish.c -o fish
> ./fish
Name = Snappy
>

File Edit Window Help Fish

You get an
error if you
try to read
struct fields
like it's an
array.

This will return the
string "Snappy".

This is the name attribute in snappy.

you are here 4   205

structs, unions, and bitfields

Pool Puzzle
Your job is to write a new version of the catalog

function using the fish struct. Take fragments
of code from the pool and place them in the
blank lines below. You may not use the same
fragment more than once, and you won't
need to use all the fragments.

Note: each thing from
the pool can only be
used once!

void catalog(struct fish f)

{

 printf("%s is a %s with %i teeth. He is %i\n",

 . , . , . , .);

}

int main()

{

 struct fish snappy = {"Snappy", "Piranha", 69, 4};

 catalog(snappy);

 /* We're skipping calling label for now */

 return 0;

}

teeth

*

name

f

species
fish

age

Piranha

f

f

f

fishfish

fish

*

206   Chapter 5

page goal header

Pool Puzzle Solution
Your job is to write a new version of the catalog

function using the fish struct. Take fragments
of code from the pool and place them in the
blank lines below. You may not use the same
fragment more than once, and you won't
need to use all the fragments.

void catalog(struct fish f)

{

 printf("%s is a %s with %i teeth. He is %i\n",

 . , . , . , .);

}

int main()

{

 struct fish snappy = {"Snappy", "Piranha", 69, 4};

 catalog(snappy);

 /* We're skipping calling label for now */

 return 0;

}

teeth

*

namef species

fish

age

Piranha

f ff

fishfish

fish

*

you are here 4   207

structs, unions, and bitfields

Test Drive
You've re-written the catalog() function, so it's pretty easy to
re-write the label() function as well. Once you've done that
you can compile the program and check that it still works:

> make pool_puzzle && ./pool_puzzle
gcc pool_puzzle.c -o pool_puzzle
Snappy is a Piranha with 69 teeth. He is 4
Name:Snappy
Species:Piranha
4 years old, 69 teeth
>

File Edit Window Help FishAreFriendsNotFood

That's great. The code works the same as it did before, but now
we have really simple lines of code that call the two functions:

catalog(snappy);

label(snappy);

Hey look - someone's
using make...

This line is printed out
by the catalog() function.
These lines are printed
by the label() function.

But not only is the code more readable, but if we ever decide to
record some extra data in the struct, we won't have to change
anything in the functions that use it.

Q: So is a struct just an array?

A:No - but like an array it groups a number of pieces of data
together.

Q:An array variable is just a pointer to the array. Is a struct
variable a pointer to a struct?

A:No. A struct variable is a name for the struct itself.

Q:I know I don't have to, but could I use [0], [1],... to access
the fields of a struct?

A:No - you can only access fields by name.

Q:Are structs like classes in other languages?

A:They are similar, but it's not so easy to add methods to structs.

208   Chapter 5

page goal header

Structs In Memory Up Close

When you define a struct, you're not telling the computer to create
anything in memory. You're just giving it a template for how you
want a new type of data to look.

struct fish {

 const char* name;

 const char* species;

 int teeth;

 int age;

};

But when you define a new variable, the computer will need to create
some space in memory for an instance of the struct. That space
in memory will need to be big enough to contain all of the fields
within the struct:

struct fish snappy = {"Snappy", "Piranha", 69, 4};

So what do you think happens when you assign a struct to another
variable? Well the computer will create a brand new copy of the
struct. That means it will need to allocate another piece of memory
of the same size, and then copy over each of the fields.

Remember: when you're assigning struct variables,
you are telling the computer to copy data.

*name *species 69 4

"Snappy" "Piranha"

This is a pointer
to a string.

This is also a pointer to a string.

Storage for the number
of teeth and age.

struct fish snappy = {"Snappy", "Piranha", 69, 4};

struct fish gnasher = snappy;

*name *species 69 4

"Snappy" "Piranha"

*name *species 69 4
This is snappy.

And this is gnasher.

gnasher and snappy both
point to the same strings.

you are here 4   209

structs, unions, and bitfields

But what if you need to connect structs together?
Remember that when you define a struct we are actually
creating a new data-type. C gives us lots of built-in data-types like
ints and shorts, but a struct lets us combine existing types
together so that you can describe more complex objects to the
computer.

But if a struct creates a data-type from existing data-types,
that means you can also create structs from other
structs. To see how this works, let's look at an example.

struct preferences {

 const char* food;

 float exercise_hours;

};

struct fish {

 const char* name;

 const char* species;

 int teeth;

 int age;

 struct preferences care;

};

This code tells the computer one struct will contain another
struct. You can then create variables using the same array-like
code as before, but now you can include the data for one struct
inside another:

struct fish snappy = {"Snappy", "Piranha", 69, 4, {"Meat", 7.5}};

Once you've combined structs together, we can access the
fields using a chain of "." operators:

printf("Snappy likes to eat %s", snappy.care.food);

printf("Snappy likes to exercise for %f hours", snappy.care.exercise_hours);

OK - let's try out your new struct skillz...

This is the struct data
for the "care" field.

This is the value
for care.food.

This is the value for
care.exercise_hours.

These are things our fish likes.

This is a new field.
This is a struct inside a struct.

Our new field is called "care" but it will contain
fields defined by the "preferences" struct.

Why Combine
Structs?

Why would you want
to do this? So we can
cope with complexity.
structs give us bigger
building blocks of data.
By combining structs
together we can create
larger and larger data
structures. We might
have to begin with
just ints and shorts,
but with structs we
can describe hugely
complex things, like
network streams, or
video images.

210   Chapter 5

page goal header

The guys at the Head First Aquarium are starting to record lots of data about each of their fish
guests. Here are their structs:

struct exercise {

 const char* description;

 float duration;

};

struct meal {

 const char* ingredients;

 float weight;

};

struct preferences {

 struct meal food;

 struct exercise exercise;

};

struct fish {

 const char* name;

 const char* species;

 int teeth;

 int age;

 struct preferences care;

};

you are here 4   211

structs, unions, and bitfields

This is the data that will be recorded for one of the fish:

 Name: Snappy

 Species: Piranha

 Food ingredients: meat

 Food weight: 0.2 lbs

 Exercise description: swim in the jacuzzi

 Exercise duration 7.5 hours

Question 0: How would you write this data in C?

struct fish snappy =

Question 1: Complete the code of the label() function so it produces output like this:

Name:Snappy

Species:Piranha

4 years old, 69 teeth

Feed with 0.20 lbs of meat and allow to swim in the jacuzzi for 7.50 hours

void label(struct fish a)

{

 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",

 a.name, a.species, a.teeth, a.age);

 printf("Feed with %2.2f lbs of %s and allow to %s for %2.2f hours\n",

 , ,

 ,);

}

212   Chapter 5

page goal header

The guys at the Head First Aquarium are starting to record lots of data about each of their fish
guests. Here are their structs:

struct exercise {

 const char* description;

 float duration;

};

struct meal {

 const char* ingredients;

 float weight;

};

struct preferences {

 struct meal food;

 struct exercise exercise;

};

struct fish {

 const char* name;

 const char* species;

 int teeth;

 int age;

 struct preferences care;

};

you are here 4   213

structs, unions, and bitfields

This is the data that will be recorded for one of the fish:

 Name: Snappy

 Species: Piranha

 Food ingredients: meat

 Food weight: 0.2 lbs

 Exercise description: swim in the jacuzzi

 Exercise duration 7.5 hours

Question 0: How would you write this data in C?

struct fish snappy =

Question 1: Complete the code of the label() function so it produces output like this:

Name:Snappy

Species:Piranha

4 years old, 69 teeth

Feed with 0.20 lbs of meat and allow to swim in the jacuzzi for 7.50 hours

void label(struct fish a)

{

 printf("Name:%s\nSpecies:%s\n%i years old, %i teeth\n",

 a.name, a.species, a.teeth, a.age);

 printf("Feed with %2.2f lbs of %s and allow to %s for %2.2f hours\n",

 , ,

 ,);

}

{"Snappy", "Piranha", 69, 4, {{"meat", 0.2}, {"swim in the jacuzzi", 7.5}}};

a.care.food.weight a.care.food.ingredients
a.care.exercise.description a.care.exercise.duration

214   Chapter 5

page goal header

Hmmm... all these struct commands seem kind of
wordy. I have to use the struct keyword when I define a
struct, then I have to use it again when a define a variable.

I wonder if there's some way of simplifying this?

You can give your struct a proper name using typedef
When you create variables for built-in data-types, you can use simple short-
names like int or double, but so far every time we've created a variable
containing a struct we've had to include the struct keyword.

struct cell_phone {

 int cell_no;

 const char * wallpaper;

 float minutes_of_charge;

};

...

struct cell_phone p = {5557879, "sinatra.png", 1.35};

But C allows us to create an alias for any struct that you
create. If you add the word typedef before the struct
keyword, and a type name after the closing brace, you can call
the new type whatever you like:

typedef struct cell_phone {

 int cell_no;

 const char * wallpaper;

 float minutes_of_charge;

} phone;

...

phone p {5557879, "sinatra.png", 1.35};

typedefs can shorten your code and make it
easier to read. Let's see what our code will look
like if you start to add typedefs to it...

What should I call
my new type?

If you use typedef to create an alias for a
struct you will need to decide what your
alias will be. The alias is just the name of
your type. That means there are two names to
think about: the name of the struct (struct
cell_phone) and the name of the type
(phone). Why have two names? You usually
don't need both. The compiler is quite happy
for you to skip the struct name - like this:

typedef struct {

 int cell_no;

 const char * wallpaper;

 float minutes_of_charge;

} phone;

phone p = {5557879, "s.png", 1.35};

typedef
means we
are going
to give
the struct
type a new
name. phone will become an alias for

"struct cell_phone".

Now when the compiler sees "phone" it will treat
it like "struct cell_phone".

This is
the alias.

you are here 4   215

structs, unions, and bitfields

Exercise

It's time for the scuba diver to make his daily round of the tanks and he needs a new label on
his suit. Trouble is, it looks like some of the code has gone missing. Can you work out what the
missing words are?

#include <stdio.h>

 struct {

 float tank_capacity;

 int tank_psi;

 const char* suit_material;

} ;

 struct scuba {

 const char* name;

 equipment kit;

} diver;

void badge(d)

{

 printf("Name: %s Tank: %2.2f(%i) Suit: %s\n",

 d.name, d.kit.tank_capacity, d.kit.tank_psi, d.kit.suit_material);

}

int main()

{

 randy = {"Randy", {5.5, 3500, "Neoprene"}};

 badge(randy);

 return 0;

}

216   Chapter 5

page goal header

It's time for the scuba diver to make his daily round of the tanks and he needs a new label on
his suit. Trouble is, it looks like some of the code has gone missing. Can you work out what the
missing words are?

#include <stdio.h>

 struct {

 float tank_capacity;

 int tank_psi;

 const char* suit_material;

} ;

 struct scuba {

 const char* name;

 equipment kit;

} diver;

void badge(d)

{

 printf("Name: %s Tank: %2.2f(%i) Suit: %s\n",

 d.name, d.kit.tank_capacity, d.kit.tank_psi, d.kit.suit_material);

}

int main()

{

 randy = {"Randy", {5.5, 3500, "Neoprene"}};

 badge(randy);

 return 0;

}

typedef

equipment

typedef

diver

diver

The coder decided to give the struct the name
"scuba" here. But we'll just use the diver type name.

Exercise
 Solution

you are here 4   217

structs, unions, and bitfields

Q: Do struct fields placed next to
each other in memory?

A: Sometimes there are small gaps
between the fields.

Q: Why's that?

A: The computer likes data to fit inside
word boundaries. So if a computer uses
32-bit words, it won't want a short, say, to
be split over a 32-bit boundary.

Q: So it would leave a gap and start
the short in the next 32-bit word?

A: Yes.

Q: Does that mean each field takes
up a whole word?

A: No. The computer only leaves gaps
to prevent fields splitting across word
boundaries. If it can fit several fields into a
single word, it will.

Q: Why does the computer care
about word boundaries?

A: It will read complete words from the
memory. If a field is split across more than
1 word, the CPU would have to read several
locations and somehow stitch the value
together.

Q: And that'd be slow?

A: That'd be slow.

Q: In languages like Java, if I assign
an object to a variable, it doesn't copy
the object, it just copies a reference.
Why is it different in C?

A: In C all assignments copy data. If you
want to copy a reference to a piece of data,
you should assign a pointer.

Q: I'm really confused about struct
names. What's the struct name and
what's the alias?

A: The struct name is the word that
follows the struct keyword. If you write
struct fred { ... }, then the name is "fred" and
when you create variables you would say
struct fred x.

Q: And the alias?

A: Sometimes you don't want to keep
using the struct keyword when you declare
variables, so typedef allows you to create a
single word alias. In typedef struct fred { ... }
james;, then the word "james" is the alias.

Q: So what's an anonymous struct?

A: One without a name. So typedef
struct { ... } james; has an alias of "james",
but no alias. Most of the time, if you create
an alias, you don't need a name.

�� A struct is a data type made from a
sequence of other data types.

�� structs are fixed length.

�� struct fields are accessed by name,
using dot-notation.

�� struct fields are stored in memory in
the same order they appear in the code.

�� You can connect structs together.

�� typedef creates an alias for a data
type.

�� If you use typedef with a struct,
then you can skip giving the struct
a name.

218   Chapter 5

page goal header

So how do you update a struct?
A struct is really just a bundle of variables, grouped together and
treated like a single piece of data. You've already seen how to create
a struct object, and how to access its values using the dot-notation.
But how do you change the value of a struct that already exists? Well
you can change the fields just like any other variable:

fish snappy = {"Snappy", "piranha", 69, 4};

printf("Hello %s\n", snappy.name);

snappy.teeth = 68;

This creates a struct.
This reads the value of the name field. This SETs the value

of the teeth field. Ouch! Looks like Snappy bit something hard.

That means if you look at this piece of code, you should be able to
work out what it does, right?

But there's something odd about this code...

#include <stdio.h>

typedef struct {

 const char* name;

 const char* species;

 int age;

} turtle;

void happy_birthday(turtle t)

{

 t.age = t.age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 t.name, t.age);

}

int main()

{

 turtle myrtle = {"Myrtle", "Leatherback sea turtle", 99};

 happy_birthday(myrtle);

 printf("%s's age is now %i\n", myrtle.name, myrtle.age);

 return 0;

}

Myrtle the turtle.

you are here 4   219

structs, unions, and bitfields

Test Drive
This is what happens when you compile and run the code:

> gcc turtle.c -o turtle && ./turtle
Happy Birthday Myrtle! You are now 100 years old!
Myrtle's age is now 99
>

File Edit Window Help ILikeTurtles

WTF????

Something weird has happened.
The code creates a new struct and then passes it to a function
that was supposed to increase the value of one of the fields by 1.
And that's exactly what the code did.... at least - for a while.

Inside the happy_birthday() function, the age field was
updated - and we know that it worked because the printf()
function displayed the new increased age value. But that's
when the weird thing happened. Even though the age was
updated by the function, when the code returned to the
main() function, the age seemed to reset itself.

This code is doing something weird. But you've already been
given enough information to tell you exactly what happened.
Can you work out what it is?

220   Chapter 5

page goal header

The code is cloning the turtle
Let's take a closer look at the code that called the
happy_birthday() function:

void happy_birthday(turtle t)

{

 ...

}

...

happy_birthday(myrtle);

The myrtle struct will be
copied to this parameter.

This is the turtle that we are passing to the function.

In C, parameters are passed to functions by value - that
means when you call a function, the values you pass into it
are assigned to the parameters. So in this code, it's almost as
if we had written something like this:

turtle t = myrtle;

But remember - whe we assign structs in C, the values are
copied. When you call the function, the parameter t will
contain a copy of the myrtle struct. It's as if the function
has a clone of the original turtle. So the code inside the
function does update the age of the turtle - but it's a different
turtle.

What happens when the function returns? The t parameter
disappears, and the rest of the code in main() uses
the myrtle struct. But the value of myrtle was never
changed by the code. It was always a completely separate
piece of code.

So what do you do if you want pass a struct
to a function that needs to update it?

This is Myrtle... ...but her clone is sent to the function.

Turtle "t".

you are here 4   221

structs, unions, and bitfields

You need a pointer to the struct
When we passed a variable to the scanf() function, we couldn't
pass the variable itself to the scanf, we had to pass a pointer:

scanf("%f", &length_of_run);

Why did we do that? Because if we tell the scanf() function
where the variable lives in memory, then the function will be able to
update the data stored at that place in memory, which means it can
update the variable.

And you can do just the same with structs. If you want a function
to update a struct variable, you can't just pass the struct as
a parameter because that will simply send a copy of the data to the
function. Instead, you can pass the address of the struct:

void happy_birthday(turtle* t)

{

 ...

}

...

happy_birthday(&myrtle);

This means "Someone is going to
give me a pointer to a struct".

This means we will pass the address of the myrtle variable to the function.

Remember: an address == a pointer.

See if you can figure out what expression needs to fit into each
of the gaps in this new version of the happy_birthday()
function.

Be careful. Don't forget that t is now a pointer variable.

void happy_birthday(turtle* t)

{

 .age = .age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 .name, .age);

}

222   Chapter 5

page goal header

See if you can figure out what expression needs to fit into each
of the gaps in this new version of the happy_birthday()
function.

Be careful. Don't forget that t is now a pointer variable.

void happy_birthday(turtle* t)

{

 .age = .age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 .name, .age);

}

(*t) (*t)

(*t) (*t)

We need to put a "*" before the variable
name because we want the value it points to.

The parentheses are really important.
The code will break without them.

(*t).age vs. *t.age
So why did you need to make sure that *t was wrapped in
parentheses? It's because the two expression (*t).age
and *t.age are very different:

So the expression *t.age is really the same as *(t.age).
Think about that expression for the moment. It means

"The contents of the memory location give by t.age". But
t.age isn't a memory location.

So be careful with your parentheses when
using structs - parentheses really matter.

(*t).age *t.age

I am the contents of
the memory location
given by t.age.

I am the age
of the turtle
pointed to by t.

=

you are here 4   223

structs, unions, and bitfields

Test Drive
Let's check if we got around the bug:

> gcc happy_birthday_turtle_works.c -o happy_birthday_turtle_works
Happy Birthday Myrtle! You are now 100 years old!
Myrtle's age is now 100
>

File Edit Window Help ILikeTurtles

That's great. The function now works.
By passing a pointer to the struct we allowed the function to
update the original data rather than taking a local copy.

I can see how the new code works. But the
stuff about parentheses and *-notation don't
make the code all that readable. I wonder if
there something that would help with that...?

Yes - there is another struct pointer notation
that is more readable.
Because you need to be careful to use parentheses in the right
way when you're dealing with pointers, the inventors of the C
language came up with a simpler and easier to read piece of
syntax. These two expressions mean the same thing:

(*t).age

t->age

So t->age means "The age field in the struct that t points to".
That means we can also write the function like this:

void happy_birthday(turtle *a)

{

 a->age = a->age + 1;

 printf("Happy Birthday %s! You are now %i years old!\n",

 a->name, a->age);

}

These two mean the same.

t->age
means
(*t).age

224   Chapter 5

page goal header

Safe Cracker
Shhh... it's late at night in the bank vault. Can you spin the correct combination to crack the
safe? Study these pieces of code, then see if you can find the correct combination that will
allow you to get to the gold.

#include <stdio.h>

typedef struct {

 const char* description;

 float value;

} swag;

typedef struct {

 swag* swag;

 const char* sequence;

} combination;

typedef struct {

 combination numbers;

 const char* make;

} safe;

You need to
crack this
combination.

you are here 4   225

structs, unions, and bitfields

The bank created their safe like this:

swag gold = {"GOLD!", 1000000.0};

combination numbers = {&gold, "6502"};

safe s = {numbers, "RAMACON250"};

What combination will get you to the string "GOLD!". Select one symbol or word from each column to
assemble the expression.

con

s

numbers

swap

.

->

:

-

s

numbers

swag

gold

+

.

->

-

swag

description

value

sequence

.

-

->

+

value

swag

description

gold

Q: Why are values copied to parameter variables?

A: The computer will assign the value to each parameter, just
as if you'd typed parameter=value and assignments always copy
values.

Q: Why isn't *t.age just read as (*t).age?

A: Because the computer evaluates the dot-operator before it
evaluates the *.

226   Chapter 5

page goal header

Safe Cracker Solution
Shhh... it's late at night in the bank vault. Can you spin the correct combination to crack the
safe? Study these pieces of code, then see if you can find the correct combination that will
allow you to get to the gold.

#include <stdio.h>

typedef struct {

 const char* description;

 float value;

} swag;

typedef struct {

 swag* swag;

 const char* sequence;

} combination;

typedef struct {

 combination numbers;

 const char* make;

} safe;

you are here 4   227

structs, unions, and bitfields

The bank created their safe like this:

swag gold = {"GOLD!", 1000000.0};

combination numbers = {&gold, "6502"};

safe s = {numbers, "RAMACON250"};

What combination will get you to the string "GOLD!". Select one symbol or word from each column to
assemble the expression.

con

s

numbers

swap

.

->

:

-

s

numbers

swag

gold

+

.

->

-

swag

description

value

sequence

.

-

->

+

value

swag

description

gold

So you can display the gold in the safe with:

printf("Contents = %s\n", s.numbers.swag->description);

�� When you call a function, the values
are copied to the parameter variables.

�� You can create pointers to structs,
just like any other type.

�� pointer->field is the same as
(*pointer)->field.

�� The -> notation cuts down on
parentheses and makes the code
more readable.

228   Chapter 5

page goal header

Sometimes the same type of thing
needs different types of data
structs gives you the ability to model more complex things from
the real world. But sometimes there are pieces of data that don't
have a single data-type:

All of these describe a quantity.
An integer.

Floating point.

Floating point.

So if you want to record, say, a quantity of something, and that
quantity might be a count, a weight or a volume, how would you
do that? Well - you could create several fields with a struct like this:

typedef struct {
 ...
 short count;
 float weight;
 float volume;
 ...
} fruit;

But there are a few reasons why this is not a good idea:

It would be really useful if you could specify something called
quantity in a data-type and then decide for each particular piece
of data whether you are going to record a count, a weight or a
volume against it.

In C you can do just that - by using a union.

It will take up more space in memory.¥
Someone might set more than one value.¥

Sale today:

6 apples

1.5 lb strawberries

0.5 pint orange juice

There's nothing called "quantity".¥

you are here 4   229

structs, unions, and bitfields

A union let's you reuse memory space

This is a char pointer
to the name.

This is space for the age as an int.
This is a float to store the weight.

Dog d = {"Biff", 2, 98.5};

A union is different. A union will use the space for
just one of the fields in its definition. So, if you have
a union called quantity, with fields called count,
weight and volume, the computer will give the union
enough space for its largest field, and then leave it up to
you which value you will store in there. Whether you set
the count, weight or volume field, the data will go
into the same space in memory:

If a float takes 4 bytes, and a short takes
2 then this space will be 4 bytes long.

typedef union {

 short count;

 float weight;

 float volume;

} quantity;

A union looks like a struct, but it uses the union keyword.

Each of these fields will be
stored in the same space.

Every time you create an instance of a struct, the
computer will lay out the fields in memory, one after the
other:

char* name int age float weight

quantity (might be a float or a short)

These are all different types,
but they're all quantities.

Count oranges. Weigh grapes.
Measure juice.

230   Chapter 5

page goal header

So how do you use a union?
When you declare a union variable, there are a few ways
of setting its value.

C89 style for the first field
If the union is going to store a value for the first field,
then you can use C89 notation. To give the union a value
for it's first field, just wrap the value in braces:

quantity q = {4}; This means the quantity
is a count of 4.

Designated initializers set other values
A designated initializer sets a union field value by
name - like this:

quantity q = {.weight=1.5}; This will set the
union for a floating
point weight value.

Set the value with dot-notation
The third way of setting a union value is by creating the
variable on one line, and setting an field value on another
line:

quantity q;

q.float = 3.7;

Remember: whichever way you set the union's value,
there will only ever be one piece of data stored. The
union just gives you a way of creating a variable that
supports several different data-types.

The Polite Guide to
Standards

Designated initializers allow
you to set struct and union
fields by name and are part of
the C99 C-standard. They are
supported by most modern
compilers, but be careful if
you are using some variant of
the C language. For example,
Objective C supports
designated initializers, but
C++ does not.

Q: Why is a union always set to the size
of the largest field?

A: The computer needs to make sure that
a union is always the same size. The only
way it can do that is by making sure it is large
enough to contain any of the fields.

Q:Why does the C89 notation only set
the first field? Why not set it to the first
float if I pass it a float value?

A: To avoid ambiguity. IF you had, say, a
float and a double field, should the computer
store {2.1} as a float or a double. By always
storing the value in the first field, you know
exactly how the data will be

you are here 4   231

structs, unions, and bitfields

Those designated initializers look like
they could be useful for structs as well.
I wonder if I can use them there...?

Yes - designated initializers can be used to set
the initial values of fields in structs as well.
They can be very useful if you have a struct that contains a large
number of fields and you initially just want to set a few of them. It's
also a good way of making your code more readable:

typedef struct {

 const char * color;

 int gears;

 int height;

} bike;

bike b = {.height=17, .gears=21};

This will set the gears and
the height fields, but won't
set the color field.

typedef struct {

 const char* name;

 const char* country;

 quantity amount;

} fruit_order;

fruit_order apples = {"apples", "England", .amount.weight=4.2};

printf("This order contains %2.2f lbs of %s\n", apples.amount.weight, apples.name);

Here we're using a double
designated identifier.
.amount for the struct and
.weight for the .amount.

This will print "This order contains 4.20 lbs of apples".

It's .amount because that's the name of the struct quantity varianble.

unions are often used with structs
Once you've created a union, you've created a new data type. That
means you can use its values anywhere you would use another
data-type like an int or a struct. That means you can combine
them with structs:

And you can access the values in the struct/union combination
using the dot or "->" notation you used before:

232   Chapter 5

page goal header

Mixed Up Mixers
It's Margarita Night at the Head First Lounge, but after one too many samples, it looks like the guys
have mixed up their recipes. See if you can find the matching code fragments for the different
Margarita mixes.

Here are the basic ingredients:

typedef union {

 float lemon;

 int lime_pieces;

} lemon_lime;

typedef struct {

 float tequila;

 float cointreau;

 lemon_lime citrus;

} margarita;

Here are the different margaritas:

margarita m = {2.0, 1.0, {2}};

margarita m = {2.0, 1.0, {0.5}};

margarita m = {2.0, 1.0, .citrus.lemo
n=2};

margarita m = {2.0, 1.0, 0.5};

margarita m = {2.0, 1.0, {.lime_pieces=1}};

margarita m = {2.0, 1.0, {1}};

you are here 4   233

structs, unions, and bitfields

And finally here are the different mixes and the drinks recipes they produce. Which of the margaritas need to be
added to these pieces of code to generate the correct recipes:

BE the Compiler
One of these pieces of code compiles, the
other doesn't. Your job is to play like
you're the compiler and say which one

compiles, and why the other
one doesn't.

margarita m = {2.0, 1.0, {0.5}};

margarita m;

m = {2.0, 1.0, {0.5}};

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
2.0 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
0.5 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%i pieces
 of lime\n", m.tequila, m.cointreau, m.citrus.lime_pieces);

2.0 measures of tequila
1.0 measures of cointreau
1 pieces of lime

234   Chapter 5

page goal header

Mixed Up Mixers Solution
It's Margarita Night at the Head First Lounge, but after one too many samples, it looks like the guys
have mixed up their recipes. See if you can find the matching code fragments for the different
Margarita mixes.

Here are the basic ingredients:

typedef union {

 float lemon;

 int lime_pieces;

} lemon_lime;

typedef struct {

 float tequila;

 float cointreau;

 lemon_lime citrus;

} margarita;

Here are the different margaritas:

margarita m = {2.0, 1.0, .citrus.lemo
n=2};

margarita m = {2.0, 1.0, 0.5};

margarita m = {2.0, 1.0, {1}};

None of these
lines were used.

you are here 4   235

structs, unions, and bitfields

And finally here are the different mixes and the drinks recipes they produce. Which of the margaritas need to be
added to these pieces of code to generate the correct recipes:

BE the Compiler Solution
One of these pieces of code compiles, the
other doesn't. Your job is to play like
you're the compiler and say which one

compiles, and why the other
one doesn't.

margarita m = {2.0, 1.0, {0.5}};

margarita m;

m = {2.0, 1.0, {0.5}};

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
2.0 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%2.1f
 measures of juice\n", m.tequila, m.cointreau, m.citrus.lemon);

2.0 measures of tequila
1.0 measures of cointreau
0.5 measures of juice

printf("%2.1f measures of tequila\n%2.1f measures of cointreau\n%i pieces
 of lime\n", m.tequila, m.cointreau, m.citrus.lime_pieces);

2.0 measures of tequila
1.0 measures of cointreau
1 pieces of lime

margarita m = {2.0, 1.0, {2}};

margarita m = {2.0, 1.0, {0.5}};

margarita m = {2.0, 1.0, {.lime_pieces=1}};

This one compiles perfectly. It's
actually just one of the drinks above!

This one doesn't compile because the compiler will only know that
{2.0, 1.0, {0.5}} represents a struct if it's used on the same line
that a struct is declared. When it's on a separate line the compiler
thinks it's an array.

236   Chapter 5

page goal header

Hey - wait a minute... You're setting all these
different values with all these different types
and you're storing them in the same place in
memory.... How do I know if I stored a float in there
once I've stored it? What's to stop me reading it
as a short or something...??? Hello...?

That's a really good point - you can store lots of
possible values in a union, but you have no way
of knowing what type it was once it's stored.
The compiler won't be able to keep track of the fields that are set
and read in a union so there's nothing to stop us setting one field
and reading another. Is that a problem? Sometimes it can be a
BIG PROBLEM...

typedef union {

 float weight;

 int count;

} cupcake;

int main()

{

 cupcake order = {2};

 printf("Cupcakes quantity: %i\n", order.count);

 return 0;

}

> gcc badunion.c -o badunion && ./badunion
Cupcakes quantity: 1073741824

File Edit Window Help

We need some way then of keeping track of the values
we've stored in a union. One trick that some C coders
use is to create an enum.

By mistake the
programmer has set the weight not the count.

They set the weight - but
they're reading the count.

This is what the program did.

That's a lot of cupcakes...

you are here 4   237

structs, unions, and bitfields

An enum variable stores a symbol
Sometimes you don't want to store a number or a piece of
text, you want to store something from a list of symbols. If
you want to record a day of the week, you only want to store
MONDAY, TUESDAY, WEDNESDAY,.... You don't need
to store the text, because there are only ever going to be 7
different values to choose from.

That's why enums were invented.

enum let you create a list of symbols, like this:

enum colors {RED, GREEN, PUCE};
Possible colors in our enum.

The values are separated by commas.

We could have given our type a proper name with typedef.

	 structs and
unions
separate
items with
semi-colons (;)

but enums use commas.

Any variable that is defined with a type of enum colors
can then only be set to one of the keywords in the list. So you
might define an enum colors variable like this:

enum colors favorite = PUCE;

Under the covers the computer will just assign numbers to
each of the symbols in your list, and the enum will just store a
number. But you don't need to worry about what the numbers
are - your C code can just refer to the symbols. That'll make
your code easier to read and it will prevent storing values like

"REB" or "PUSE":

enum colors favorite = PUSE;

The computer will spot this is not
a legal value so it won't compile.

Nope I'm not
compiling that -
it's not on my list;

So that's how enums work, but how do they
help us keep track of unions? Let's look at an
example...

238   Chapter 5

page goal header

Code Magnets
Because you can create new data-types with enums, you can stored them inside structs
and unions. In this program an enum is being used to track the kinds of quantities
being stored. Do you think you can work out where the missing pieces of code go?

#include <stdio.h>

typedef enum {

 COUNT, POUNDS, PINTS

} unit_of_measure;

typedef union {

 short count;

 float weight;

 float volume;

} quantity;

typedef struct {

 const char* name;

 const char* country;

 quantity amount;

 unit_of_measure units;

} fruit_order;

void display(fruit_order order)

{

 printf("This order contains ");

 if (== PINTS)

 printf("%2.2f pints of %s\n", order.amount. , order.name);

you are here 4   239

structs, unions, and bitfields

 else if (==)

 printf("%2.2f lbs of %s\n", order.amount.weight, order.name);

 else

 printf("%i %s\n", order.amount. , order.name);

}

int main()

{

 fruit_order apples = {"apples", "England", .amount.count=144, };

 fruit_order strawberries = {"strawberries", "Spain", .amount. =17.6, POUNDS};

 fruit_order oj = {"orange juice", "U.S.A.", .amount.volume=10.5, };

 display(apples);

 display(strawberries);

 display(oj);

 return 0;

}

order.unitsPINTS

weightCOUNT

volume

order.unitsPOUNDS

count

240   Chapter 5

page goal header

Code Magnets Solution
Because you can create new data-types with enums, you can stored them inside structs
and unions. In this program an enum is being used to track the kinds of quantities
being stored. Do you think you can work out where the missing pieces of code go?

#include <stdio.h>

typedef enum {

 COUNT, POUNDS, PINTS

} unit_of_measure;

typedef union {

 short count;

 float weight;

 float volume;

} quantity;

typedef struct {

 const char* name;

 const char* country;

 quantity amount;

 unit_of_measure units;

} fruit_order;

void display(fruit_order order)

{

 printf("This order contains ");

 if (== PINTS)

 printf("%2.2f pints of %s\n", order.amount. , order.name);volume

order.units

you are here 4   241

structs, unions, and bitfields

 else if (==)

 printf("%2.2f lbs of %s\n", order.amount.weight, order.name);

 else

 printf("%i %s\n", order.amount. , order.name);

}

int main()

{

 fruit_order apples = {"apples", "England", .amount.count=144, };

 fruit_order strawberries = {"strawberries", "Spain", .amount. =17.6, POUNDS};

 fruit_order oj = {"orange juice", "U.S.A.", .amount.volume=10.5, };

 display(apples);

 display(strawberries);

 display(oj);

 return 0;

}

order.units

PINTS

weight

COUNT

POUNDS

count

When you run the program you get this:

> gcc enumtest.c -o enumtest
This order contains 144 apples
This order contains 17.60 lbs of strawberries
This order contains 10.50 pints of orange juice

File Edit Window Help

242   Chapter 5

page goal header

union: ...so I said to the code - Hey look. I don't care if
you gave me a float or not. You asked for an int. You got
an int

struct: Dude, that was totally uncalled for.

union: That's what I said. It's totally uncalled for.

struct: Everyone knows you only have one storage
location.

union: Exactly. Everything is one. I'm, like, zen that
way...

enum: What happened, dude?

struct: Shut up Enum. I mean the guy was crossing the
line.

union: I mean if he had just left a record. You know
said I stored this as an int. It just needed an enum or
something.

enum: You want me to do what?

struct: Shut up Enum.

union: I mean if he'd wanted to store several things at
once, he should have called you - am I right?

struct: Order. That's what these people don't grasp.

enum: Ordering what?

struct: Separation and sequencing. I keep several
things alongside each other. All at the same time dude.

union: That's just my point.

struct: All. At. The. Same. Time.

enum: (Pause)So has there been a problem?

union: Please, Enum? I mean these people just need to

make a decision. Wanna store several things - use you.
But store just one thing with different possible types?
Dude's your man.

struct: I'm calling him.

union: Hey, wait...

enum: Who's he calling, dude?

struct/union: Shut up Enum.

union: Look - let's not cause any more problems here.

struct: Hello? Could I speak to the Bluetooth service,
please?

union: Hey - let's just think about this.

struct: What do you mean, he'll give me a callback?

union: I'm just. This doesn't seem like a good idea.

struct: No - let me leave you a message, my friend.

union: Please - just put the phone down.

enum: Who's on the phone, dude?

struct: Be quiet Enum. Can't you see I'm on the phone
here? Listen you just tell him that if he wants to store a
float and an int, he needs to come see me. Or I'm going
to come see him. Understand me? Hello? Hello?

union: Easy man. Just try and keep calm.

struct: On hold? They put me on ^*&^ing hold!

union: They what? Pass me the phone... Oh.... that...
man. The Eagles! I hate the Eagles....

enum: So if you pack your fields, is that why you're so
fat?

struct: You are entering a world of pain, my friend.

you are here 4   243

structs, unions, and bitfields

Sometimes you want control at the bit level
Let's say you need a struct that will contain a lot of yes/no
values. You could create the struct with a series of shorts or ints:

typedef struct {

 short low_pass_vcf;

 short filter_coupler;

 short reverb;

 short sequential;

 ...

} synth;

Each of these fields
will contain 1 for
true or 0 for false.

There are a lot more fields that follow this.

Each field will use many bits.

And that would work. The problem? The short fields will take
up a lot more space than the single bit that we need for true/false
value. It's wasteful. It would be much better if we could create a
struct that could hold a sequence of single bits for the values.

That's why bitfields were created.

0000000000000001 0000000000000001 0000000000000001 ...

Geek Binary Digits

When you're dealing with binary value, it would be
great if you had some way of specifying the 1s and 0s
in a literal, like:

	 int x = 01010100;
Unfortunately, C doesn't support binary literals but
it does support hexadecimal literals. Every time
C sees a number beginning with 0x, it treats the
number as base 16:

	 int x = 0x54;

But how do you convert back and forth between
hexadecimal and binary? And is it any easier than

converting binary and decimal? The good news is
that you can convert hex to binary one digit at a
time:

Each hexadecimal digit matches a binary digit of
length 4. All you need to learn are the binary patterns
for the numbers 0 - 15, and you will soon be able to
convert binary to hex and back again in your head
within seconds.

This is not decimal 54.

0x54

0101 0100
This is 5. This is 4.

244   Chapter 5

page goal header

Bitfields store a custom number of bits
A bitfield lets you specify how many bits an individual field
will store. For example, we could write our struct like
this:

typedef struct {

 unsigned int low_pass_vcf:1;

 unsigned int filter_coupler:1;

 unsigned int reverb:1;

 unsigned int sequential:1;

 ...

} synth;

This means the field will
only use 1 bit of storage.

Each field must be an unsigned int.

By using bitfields we can make sure
each field takes up only one bit.

If you have a sequence of bitfields, the computer can
squash them together to save space. So if you have 8
single-bit bitfields, the computer can store them in a single
byte.

Let's see how how good you are at using
bitfields.

	 Bitfields
can save
space if
they are
collected

together in a struct.

But if the compiler finds a
single bitfield on its own,
it might still have to pad it
out to the size of a word.
That's why bitfields are
usually grouped together.

How many bits do I need?
Bitfields can be used to store a sequence of true/false values, but they're
also useful for other short-range value, like months of the year. If you want
to store a month number in a struct you know it will have a value of, say, 0

- 11. You can store those values in 4 bits. Why? Because 4 bits let you store
0-15, but 3 bits only store 0-7.

...

unsigned int month_no:4;

...

1 1 1 ...

you are here 4   245

structs, unions, and bitfields

Back at the Head First Aquarium they're creating a customer satisfaction survey. Let's see if you
can use bitfields to create a matching struct.

typedef struct {

 unsigned int first_visit: ;

 unsigned int come_again: ;

 unsigned int fingers_lost: ;

 unsigned int shark_attack: ;

 unsigned int days_a_week: ;

} survey;

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

Aquarium Questionnaire

H e ad Fir s t

A q u a r i u m

You need to decide
how many bits to use.

246   Chapter 5

page goal header

Back at the Head First Aquarium they're creating a customer satisfaction survey. Let's see if you
can use bitfields to create a matching struct.

typedef struct {

 unsigned int first_visit: ;

 unsigned int come_again: ;

 unsigned int fingers_lost: ;

 unsigned int shark_attack: ;

 unsigned int days_a_week: ;

} survey;

1
1

4
1

3

Is this your first visit?

Will you come again?

Number of fingers lost in the piranha tank:

Did you lose a child in the shark exhibit?

How many days a week would you visit if you could?

Aquarium Questionnaire

H e ad Fir s t

A q u a r i u m

1 bit can store 2
values: true/false.
4 bits are needed to store up to 10.

3 bits can store
numbers up to 7.

you are here 4   247

structs, unions, and bitfields

Q: Why doesn't C support binary
literals?

A: Because they take up a lot of space
and it's usually more efficient to write hex
values.

Q: Why do I need 4 bits to store a
value up to 10?

A: 4 bits can store values from 0 to
binary 1111 == 15. But 3 bits can only store
values up to binary 111 == 7.

Q: What happens if you try to put a
number into a bitfield that is too large?

A: The computer will transfer just the bits
it needs.

Q: So what if I try to put the value 9
into a 3 bit field?

A: The computer will store a value of 1
in it, because 9 == 1001 in binary, so the
computer transfers 001.

Q: Are bitfields really just used to
save space?

A: No. They are important if you need to
read low-level binary information.

Q: Such as?

A: If you are reading or writing some sort
of custom binary file.

�� A union allows you to store
different data-types in the same
memory location.

�� A designated initializer sets a field
value by name.

�� Designated initializers are part of
the C99 standard. They are not
supported in C++.

�� If you declare a union with a value
in {braces}, it will be stored with the
type of the first field.

�� The compiler will let you store one
field in an union and read a complete
different field.

�� enums store symbols.

�� Bit-fields allow you to store a field
with a custom number of bits.

�� Bit-fields are always declared as
unsigned ints.

248   Chapter 5

page goal header

Your C Toolbox

You’ve got Chapter 5 under
your belt and now you’ve

added structs, unions and
bitfields to your tool box. For a

complete list of tooltips in the book,
see Appendix X.CH

AP
T

ER
 5

A struct
combines data
types together

.

You can read
struct fields
with dot.
notation.

You can
intialize structs
with {array,
like, notation}.

typedef lets
you create an
alias for a
data-type. .

-> notation
lets you easily
update fields
using a struct
pointer.

unions can
different
data types in
one location.

Designated
initializers lets
you set struct
and union fields
by name.

enums let you
create a set
of symbols.

Bitfields give
you control
over the exact
bits stored in a
struct.

